1.關(guān)于數(shù)學(xué)的小知識
數(shù)學(xué)小知識
--------------------------------------------------------------------------------
數(shù)學(xué)符號的起源
數(shù)學(xué)除了記數(shù)以外,還需要一套數(shù)學(xué)符號來表示數(shù)和數(shù)、數(shù)和形的相互關(guān)系。數(shù)學(xué)符號的發(fā)明和使用比數(shù)字晚,但是數(shù)量多得多?,F(xiàn)在常用的有200多個(gè),初中數(shù)學(xué)書里就不下20多種。它們都有一段有趣的經(jīng)歷。
例如加號曾經(jīng)有好幾種,現(xiàn)在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀(jì),意大利科學(xué)家塔塔里亞用意大利文"più"(加的意思)的第一個(gè)字母表示加,草為"μ"最后都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
到了十五世紀(jì),德國數(shù)學(xué)家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經(jīng)用過十幾種,現(xiàn)在通用兩種。一個(gè)是"*",最早是英國數(shù)學(xué)家奧屈特1631年提出的;一個(gè)是"· ",最早是英國數(shù)學(xué)家赫銳奧特首創(chuàng)的。德國數(shù)學(xué)家萊布尼茨認(rèn)為:"*"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘??墒沁@個(gè)符號現(xiàn)在應(yīng)用到集合論中去了。
到了十八世紀(jì),美國數(shù)學(xué)家歐德萊確定,把"*"作為乘號。他認(rèn)為"*"是"+"斜起來寫,是另一種表示增加的符號。
"÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數(shù)學(xué)家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。后來瑞士數(shù)學(xué)家拉哈在他所著的《代數(shù)學(xué)》里,才根據(jù)群眾創(chuàng)造,正式將"÷"作為除號。
十六世紀(jì)法國數(shù)學(xué)家維葉特用"="表示兩個(gè)量的差別??墒怯=虼髮W(xué)數(shù)學(xué)、修辭學(xué)教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數(shù)相等是最合適不過的了,于是等于符號"="就從1540年開始使用起來。
1591年,法國數(shù)學(xué)家韋達(dá)在菱中大量使用這個(gè)符號,才逐漸為人們接受。十七世紀(jì)德國萊布尼茨廣泛使用了"="號,他還在幾何學(xué)中用"∽"表示相似,用"≌"表示全等。
大于號"〉"和小于號"〈",是1631年英國著名代數(shù)學(xué)家赫銳奧特創(chuàng)用。至于≯""≮"、"≠"這三個(gè)符號的出現(xiàn),是很晚很晚的事了。大括號"{ }"和中括號"[ ]"是代數(shù)創(chuàng)始人之一魏治德創(chuàng)造
2.有關(guān)數(shù)學(xué)的小知識
對于那些成績較差的小學(xué)生來說,學(xué)習(xí)小學(xué)數(shù)學(xué)都有很大的難度,其實(shí)小學(xué)數(shù)學(xué)屬于基礎(chǔ)類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學(xué),是一個(gè)需要養(yǎng)成良好習(xí)慣的時(shí)期,注重培養(yǎng)孩子的習(xí)慣和學(xué)習(xí)能力是重要的一方面,那小學(xué)數(shù)學(xué)有哪些技巧?
一、重視課內(nèi)聽講,課后及時(shí)進(jìn)行復(fù)習(xí).
新知識的接受和數(shù)學(xué)能力的培養(yǎng)主要是在課堂上進(jìn)行的,所以我們必須特別注意課堂學(xué)習(xí)的效率,尋找正確的學(xué)習(xí)方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預(yù)測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學(xué)習(xí)技能,并及時(shí)審查它們以避免疑慮.首先,在進(jìn)行各種練習(xí)之前,我們必須記住教師的知識點(diǎn),正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認(rèn)真分析問題,嘗試自己解決問題.
二、多做習(xí)題,養(yǎng)成解決問題的好習(xí)慣.
如果你想學(xué)好數(shù)學(xué),你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標(biāo)準(zhǔn),反復(fù)練習(xí)基本知識,然后找一些課外活動,幫助開拓思路練習(xí),提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準(zhǔn)備一個(gè)用于收集的錯(cuò)題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習(xí)慣.學(xué)會讓自己高度集中精力,使大腦興奮,快速思考,進(jìn)入最佳狀態(tài)并在考試中自由使用.
三、調(diào)整心態(tài)并正確對待考試.
首先,主要的重點(diǎn)應(yīng)放在基礎(chǔ)、基本技能、基本方法,因?yàn)榇蠖鄶?shù)測試出于基本問題,較難的題目也是出自于基本.所以只有調(diào)整學(xué)習(xí)的心態(tài),盡量讓自己用一個(gè)清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習(xí)題進(jìn)行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎(chǔ)題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正?;蛘叱0l(fā)揮.
由此可見小學(xué)數(shù)學(xué)的技巧就是多做練習(xí)題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調(diào)整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進(jìn)入到數(shù)學(xué)的海洋中去.
3.關(guān)于數(shù)學(xué)的小知識
去百度文庫,查看完整內(nèi)容> 內(nèi)容來自用戶:妙想甜開 數(shù)學(xué)小知識 阿拉伯?dāng)?shù)字 在生活中,我們經(jīng)常會用到0、1、2、3、4、5、6、7、8、9這些數(shù)字。
那么你知道這些數(shù)字是誰發(fā)明的嗎? 這些數(shù)字符號原來是古代印度人發(fā)明的,后來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發(fā)明的,就把它們叫做“阿拉伯?dāng)?shù)字”,因?yàn)榱鱾髁嗽S多年,人們叫得順口,所以至今人們?nèi)匀粚㈠e(cuò)就錯(cuò),把這些古代印度人發(fā)明的數(shù)字符號叫做阿拉伯?dāng)?shù)字。 現(xiàn)在,阿拉伯?dāng)?shù)字已成了全世界通用的數(shù)字符號。
九九歌 九九歌就是我們現(xiàn)在使用的乘法口訣。 遠(yuǎn)在公元前的春秋戰(zhàn)國時(shí)代,九九歌就已經(jīng)被人們廣泛使用。
在當(dāng)時(shí)的許多著作中,都有關(guān)于九九歌的記載。最初的九九歌是從“九九八十一”起到“二二如四”止,共36句。
因?yàn)槭菑摹熬啪虐耸弧遍_始,所以取名九九歌。大約在公元五至十世紀(jì)間,九九歌才擴(kuò)充到“一一如一”。
大約在公元十三、十四世紀(jì),九九歌的順序才變成和現(xiàn)在所用的一樣,從“一一如一”起到“九九八十一”止。 現(xiàn)在我國使用的乘法口訣有兩種,一種是45句的,通常稱為“小九九”;還有一種是81句的,通常稱為“大九九”。
音樂與數(shù)學(xué) 動人的音樂常給人以美妙的感受。古人云:余音繞梁,三日不絕,這說的是唱得好,也有的人五音不全,唱不成調(diào),這就是唱得不好了。
同樣是唱歌,甚至是唱同樣的歌,給人的感覺卻是迥然不同。
4.關(guān)于數(shù)學(xué)的小知識
1,零
在很早的時(shí)候,以為“1”是“數(shù)字字符表”的開始,并且它進(jìn)一步引出了2,3,4,5等其他數(shù)字。這些數(shù)字的作用是,對那些真實(shí)存在的物體,如蘋果、香蕉、梨等進(jìn)行計(jì)數(shù)。直到后來,才學(xué)會,當(dāng)盒子里邊已經(jīng)沒有蘋果時(shí),如何計(jì)數(shù)里邊的蘋果數(shù)。
2,數(shù)字系統(tǒng)
數(shù)字系統(tǒng)是一種處理“多少”的方法。不同的文化在不同的時(shí)代采用了各種不同的方法,從基本的“1,2,3,很多”延伸到今天所使用的高度復(fù)雜的十進(jìn)制表示方法。
3,π
π是數(shù)學(xué)中最著名的數(shù)。忘記自然界中的所有其他常數(shù)也不會忘記它,π總是出現(xiàn)在名單中的第一個(gè)位置。如果數(shù)字也有奧斯卡獎,那么π肯定每年都會得獎。
π或者pi,是圓周的周長和它的直徑的比值。它的值,即這兩個(gè)長度之間的比值,不取決于圓周的大小。無論圓周是大是小,π的值都是恒定不變的。π產(chǎn)生于圓周,但是在數(shù)學(xué)中它卻無處不在,甚至涉及那些和圓周毫不相關(guān)的地方。
4,代數(shù)
代數(shù)給了一種嶄新的解決間題的方式,一種“回旋”的演年方法。這種“回旋”是“反向思維”的。讓我們考慮一下這個(gè)問題,當(dāng)給數(shù)字25加上17時(shí),結(jié)果將是42。這是正向思維。這些數(shù),需要做的只是把它們加起來。
但是,假如已經(jīng)知道了答案42,并提出一個(gè)不同的問題,即現(xiàn)在想要知道的是什么數(shù)和25相加得42。這里便需要用到反向思維。想要知道未知數(shù)x的值,它滿足等式25+x=42,然后,只需將42減去25便可知道答案。
5,函數(shù)
萊昂哈德·歐拉是瑞士數(shù)學(xué)家和物理學(xué)家。歐拉是第一個(gè)使用“函數(shù)”一詞來描述包含各種參數(shù)的表達(dá)式的人,例如:y?=?F(x),他是把微積分應(yīng)用于物理學(xué)的先驅(qū)者之一。
5.數(shù)學(xué)趣味小知識 簡短的 20到50字左右
趣味數(shù)學(xué)小知識 數(shù)論部分: 1、沒有最大的質(zhì)數(shù)。
歐幾里得給出了優(yōu)美而簡單的證明。 2、哥德巴赫猜想:任何一個(gè)偶數(shù)都能表示成兩個(gè)質(zhì)數(shù)之和。
陳景潤的成果為:任何一個(gè)偶數(shù)都能表示成一個(gè)質(zhì)數(shù)和不多于兩個(gè)質(zhì)數(shù)的乘積之和。 3、費(fèi)馬大定理:x的n次方+y的n次方=z的n次方,n>2時(shí)沒有整數(shù)解。
歐拉證明了3和4,1995年被英國數(shù)學(xué)家 安德魯*懷爾斯 證明。 拓?fù)鋵W(xué)部分: 1、多面體點(diǎn)面棱的關(guān)系:定點(diǎn)數(shù)+面數(shù)=棱數(shù)+2,笛卡爾提出,歐拉證明,也稱歐拉定理。
2、歐拉定理推論:可能只有5種正多面體,正四面體,正八面體,正六面體,正二十面體,正十二面體。 3、把空間翻過來,左手系的物體就能變成右手系的,通過克萊因瓶模擬,一節(jié)很好的頭腦體操, 摘自:/olpcyanghui.htm