绝对不卡福利网站|中文字幕在笑第一页|午夜福利中文字幕首页|久久精彩视频免费观看

  • <abbr id="lczsv"></abbr>
    <blockquote id="lczsv"></blockquote>

    <track id="lczsv"><table id="lczsv"><nobr id="lczsv"></nobr></table></track>
    • 高中物理學常識

      2022-11-15 綜合 86閱讀 投稿:天涯海

      1.高一物理知識點總結

      高中物理‘加速度’,一般都是指‘勻加速度’,即,加速度是一個常量

      1、加速度a與速度V的關系符合下式:V==at,t為時間變量,

      我們有

      a==V/t

      表明,加速度a,就是速度V在單位時間內的平均變化率。

      2、V==at是一個直線方程,它相當于數(shù)學上的y=kx(V相當于y,t相當于x,a相當于k)

      數(shù)學知識指出,k是特定直線y=kx的斜率,

      直線斜率有如下性質:

      (1)不同直線(彼此不平行)的斜率,數(shù)值不等

      (2)同一直線上斜率的數(shù)值,處處相等(與y和x的數(shù)值無關)

      (3)直線斜率的數(shù)值,可以通過y和x的數(shù)值來求算:

      k==y/x

      (4)雖然k==y/x,但是,y==0,x==0,k不為零。

      仿此,

      (1)不同運動的加速度,數(shù)值不等

      (2)同一運動的加速度數(shù)值,處處相等(與V和t的數(shù)值無關)

      (3)運動的加速度數(shù)值,可以通過V和t的數(shù)值來求算:

      ==V/t

      (4)雖然a==V/t,但是V==0(由靜止開始云動),t==0,但a不為零。

      .變加速運動中的物體加速度在減小而速度卻在增大,以及加速度不為零的物體速度大小卻可能不變.(這兩句怎么理解啊??舉幾個例子?

      變加速運動中加速度減小速度當然是增大了,只有加速度的方向與速度方向一致那么速度就是增加的,與加速度大小沒有關系,例如從一個半圓形軌道上滑下的一個木塊,它沿水平方向的加速度是減小的,但速度是增加的。

      加速度在與速度方向在同一條直線上時才改變速度的大小,

      有加速度那么速度就得改變,如果想讓速度大小不變,那么就得讓它的方向改變,如勻速圓周運動,加速度的大小不變且不為0,速度方向不斷改變但大小不變。

      剎車方面應用題:汽車以15米每秒的速度行駛,司機發(fā)現(xiàn)前方有危險,在0.8s之后才能作出反應,馬上制動,這個時間稱為反應時間.若汽車剎車時能產生最大加速度為5米每二次方秒,從汽車司機發(fā)現(xiàn)前方有危險馬上制動剎車到汽車完全停下來,汽車所通過的距離叫剎車距離.問該汽車的剎車距離為多少?(最好附些過程,謝謝)

      15米/秒 加速度是5米/二次方秒 那么停止需要3秒鐘

      3秒通過的路程是s=15*3-1/2*5*3^2=22.5

      反應時間是0.8秒 s=0.8*15=12

      總的距離就是22.5+12=34.5

      原先“直線運動”是放在“力”之后的,在力這一章先講矢量及其算法,然后是利用矢量運算法則學習力的計算?,F(xiàn)在倒過來了。建議你還是先學一下這這章內容。

      要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物體運動前后位置的變化,即由開始位置指向結束位置的矢量。

      速度就是物體位移(物體位置的變化量)與物體運動所用時間的比值,如果物體不是勻速運動(叫變速運動),速度就又有瞬時速度和平均速度之分,平均速度就是作變速運動的物體在某段時間內(或某段位移上),位移與時間的比值;瞬時速度就是物體在某一點或某一時刻的速度。

      加速度就是物體速度的變化量與物體速度變化所用時間的比值,如果物體不是勻加速運動(叫變加速運動),加速度就又有瞬時加速度和平均加速度之分,平均加速度就是作變速運動的物體在某段時間內(或某段位移上),速度變化量與時間的比值;瞬時加速度就是物體在某一點或某一時刻的加速度。

      對比上面速度與加速度的概念,你就會容易理解一點的。

      2.高中物理常識大集合

      劉叔博客1、伽利略(1)通過理想實驗推翻了亞里士多德“力是維持運動的原因”的觀點(2)推翻了亞里士多德“重的物體比輕物體下落得快”的觀點2、開普勒:提出開普勒行星運動三定律;3、牛頓(1)提出了三條運動定律。

      (2)發(fā)現(xiàn)表萬有引力定律;4、卡文迪許:利用扭秤裝置比較準確地測出了引力常量G5、愛因斯坦(1)提出的狹義相對論(經典力學不適用于微觀粒子和高速運動物體)(2)提出光子說,成功地解釋了光電效應規(guī)律,并因此獲得諾貝爾物理學獎(3)提出質能方程,為核能利用提出理論基礎。6、庫侖:利用扭秤實驗發(fā)現(xiàn)了電荷之間的相互作用規(guī)律——庫侖定律。

      7、焦耳和楞次先后獨立發(fā)現(xiàn)電流通過導體時產生熱效應的規(guī)律,稱為焦耳——楞次定律(這個很冷門!以教材為主?。?、奧斯特發(fā)現(xiàn)南北放置的通電直導線可以使周圍的磁針偏轉,稱為電流的磁效應。9、安培:研究電流在磁場中受力的規(guī)律(安培定則),分子電流假說,磁場能對電流產生作用10、洛侖茲:提出運動電荷產生了磁場和磁場對運動電荷有作用力(洛侖茲力)的觀點。

      11、法拉第(1)發(fā)現(xiàn)了由磁場產生電流的條件和規(guī)律——電磁感應現(xiàn)象(教材上是這樣的,實際不是有一定歷史原因,以教材為主!)(2)提出電荷周圍有電場,提出可用電場描述電場,提出電磁場、磁感線、電場線的概念12、楞次:確定感應電流方向的定律,愣次定律:感應電流具有這樣的方向,即感應電流的磁場總要阻礙引起感應電流的磁通量的變化。13、亨利:發(fā)現(xiàn)自感現(xiàn)象(這個也比較冷門)。

      14、麥克斯韋:預言了電磁波的存在,指出光是一種電磁波,為光的電磁理論奠定了基礎。15、赫茲:(1)用實驗證實了電磁波的存在并測定了電磁波的傳播速度等于光速。

      (2)證實了電磁理的存在。16、普朗克提出“能量量子假說”——解釋物體熱輻射(黑體輻射)規(guī)律電磁波的發(fā)射和吸收不是連續(xù)的,而是一份一份的,即量子理論17玻爾:提出了原子結構假說,成功地解釋和預言了氫原子的輻射電磁波譜。

      18、德布羅意:預言了實物粒子的波動性,提出波粒二象性,物質波。德布羅意波,任何一種運動的物體都有一種波與之對應。

      19、湯姆生(遜)利用陰極射線管發(fā)現(xiàn)了電子,說明原子可分,有復雜內部結構,并提出原子的棗糕模型(葡萄干布丁模型)。20、盧瑟福。

      3.高中物理90個知識點歸納

      高中物理公式總結 物理定理、定律、公式表 一、質點的運動(1)------直線運動 1)勻變速直線運動 1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as 3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2時:F=(F12+F22)1/2 3.合力大小范圍:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,F(xiàn)y=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx) 注: (1)力(矢量)的合成與分解遵循平行四邊形定則; (2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖; (4)F1與F2的值一定時,F(xiàn)1與F2的夾角(α角)越大,合力越?。?(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數(shù)運算。

      四、動力學(運動和力) 1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態(tài)或靜止狀態(tài),直到有外力迫使它改變這種狀態(tài)為止 2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致} 3.牛頓第三運動定律:F=-F′{負號表示方向相反,F(xiàn)、F′各自作用在對方,平衡力與作用力反作用力區(qū)別,實際應用:反沖運動} 4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理} 5.超重:FN>G,失重:FN>r} 3.受迫振動頻率特點:f=f驅動力 4.發(fā)生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕 5.機械波、橫波、縱波〔見第二冊P2〕 6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定} 7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波) 8.波發(fā)生明顯衍射(波繞過障礙物或孔繼續(xù)傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大 9.波的干涉條件:兩列波頻率相同(相差恒定、振幅相近、振動方向相同) 10.多普勒效應:由于波源與觀測者間的相互運動,導致波源發(fā)射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕} 注: (1)物體的固有頻率與振幅、驅動力頻率無關,取決于振動系統(tǒng)本身; (2)加強區(qū)是波峰與波峰或波谷與波谷相遇處,減弱區(qū)則是波峰與波谷相遇處; (3)波只是傳播了振動,介質本身不隨波發(fā)生遷移,是傳遞能量的一種方式; (4)干涉與衍射是波特有的; (5)振動圖象與波動圖象; (6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。 六、沖量與動量(物體的受力與動量的變化) 1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同} 3.沖量:I=Ft {I:沖量(N?s),F:恒力(N),t:力的作用時間(s),方向由F決定} 4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式} 5.動量守恒定律:p前總=p后總或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.彈性碰撞:Δp=0;ΔEk=0 {即系統(tǒng)的動量和動能均守恒} 7.非彈性碰撞Δp=0;0r0,f引>f斥,F(xiàn)分子力表現(xiàn)為引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0 5.熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的), W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕} 6.熱力學第二定律 克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性); 開氏表述:不可能從單一熱源吸收熱量并把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕} 7.熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)} 注: (1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈; (2)溫度是分子平均動能的標志; 3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快; (4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小; (5)氣體膨脹,外界對氣體做負功W0;吸收熱量,Q>0 (6)物體的內能是指物體所有的分子動能和分子勢能的總和,對于理想氣體分子間作用力為零,分子勢能為零; (7)r0為分子處于平衡狀態(tài)時,分子間的距離; (8)其它相關內容:能的轉化和定恒定律〔見第二冊P41〕/能源的開發(fā)與利用、環(huán)?!惨姷诙訮47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。

      九、氣體的性質 1.氣體的狀態(tài)參量: 溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規(guī)則運動的劇烈程度的標志, 熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)} 體積V:氣體分子所能占據(jù)的空間,單位換算:1m3=103L=106mL 壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續(xù)、。

      4.高一物理必修一知識點總結

      物理必修1知識點 第一章 運動的描述 一、基本概念1、質點2、參考系3、坐標系4、時刻和時間間隔5、路程:物體運動軌跡的長度6、位移:表示物體位置的變動。

      可用從起點到末點的有向線段來表示,是矢量。 位移的大小小于或等于路程。

      7、速度:物理意義:表示物體位置變化的快慢程度。分類 平均速度: 方向與位移方向相同 瞬時速度:與速率的區(qū)別和聯(lián)系 速度是矢量,而速率是標量 平均速度=位移/時間,平均速率=路程/時間 瞬時速度的大小等于瞬時速率8、加速度 物理意義:表示物體速度變化的快慢程度 定義: (即等于速度的變化率) 方向:與速度變化量的方向相同,與速度的方向不確定。

      (或與合力的方向相同) 二、運動圖象(只研究直線運動)1、x—t圖象(即位移圖象) (1)、縱截距表示物體的初始位置。(2)、傾斜直線表示物體作勻變速直線運動,水平直線表示物體靜止,曲線表示物體作變速直線運動。

      (3)、斜率表示速度。斜率的絕對值表示速度的大小,斜率的正負表示速度的方向。

      2、v—t圖象(速度圖象) (1)、縱截距表示物體的初速度。(2)、傾斜直線表示物體作勻變速直線運動,水平直線表示物體作勻速直線運動,曲線表示物體作變加速直線運動(加速度大小發(fā)生變化)。

      (3)、縱坐標表示速度??v坐標的絕對值表示速度的大小,縱坐標的正負表示速度的方向。

      (4)、斜率表示加速度。斜率的絕對值表示加速度的大小,斜率的正負表示加速度的方向。

      (5)、面積表示位移。橫軸上方的面積表示正位移,橫軸下方的面積表示負位移。

      三、實驗:用打點計時器測速度1、兩種打點即使器的異同點2、紙帶分析;(1)、從紙帶上可直接判斷時間間隔,用刻度尺可以測量位移。(2)、可計算出經過某點的瞬時速度 (3)、可計算出加速度 第二章 勻變速直線運動的研究 一、基本關系式v=v0+at x=v0t+1/2at2 v2-vo2=2ax v=x/t=(v0+v)/2 二、推論1、vt/2=v=(v0+v)/22、vx/2= 3、△x=at2 { xm-xn=(m-n)at2 }4、初速度為零的勻變速直線運動的比例式 應用基本關系式和推論時注意:(1)、確定研究對象在哪個運動過程,并根據(jù)題意畫出示意圖。

      (2)、求解運動學問題時一般都有多種解法,并探求最佳解法。三、兩種運動特例 (1)、自由落體運動:v0=0 a=g v=gt h=1/2gt2 v2=2gh(2)、豎直上拋運動;v0=0 a=-g 四、關于追及與相遇問題1、尋找三個關系:時間關系,速度關系,位移關系。

      兩物體速度相等是兩物體有最大或最小距離的臨界條件。2、處理方法:物理法,數(shù)學法,圖象法。

      五、理解伽俐略科學研究過程的基本要素。第三章 相互作用 一、三種常見的力1、重力:由于地球對物體的吸引而產生的。

      大小:G=mg,方向:豎直向下,作用點:重心(重力的等效作用點)2、彈力 (1)、形變、彈性形變、定義等。(2)、產生條件:(3)、拉力、支持力、壓力。

      (按照力的作用效果來命名的) (4)、彈簧的彈力的大小和方向,胡克定律F=kx(5)、可用假設法來判斷是否存在彈力。3、摩擦力 (1)、靜摩擦力: ①、產生條件 ②、方向判斷 ③、大小要用“力的平衡”或“牛頓運動定律”來解。

      (2)滑動摩擦力:①、產生條件 ②、方向判斷 ③、大?。篺=uN。也可用“力的平衡”或“牛頓運動定律”來解。

      (3)、可用假設法來判斷是否存在摩擦力。二、力的合成1、定義;由分力求合力的過程。

      2、合成法則:平行四邊形定則或三角形定則。3、求合力的方法 ①、作圖法(用刻度尺和量角器) ②、計算法(通常是利用直角三角形)2、合力與分力的大小關系 三、力的分解1、分解法則:平行四邊形定則或三角形定則、2、分解原則:按照實際作用效果分解(即已知兩分力的方向)3、把一個已知力分解為兩個分力 ①、已知兩個分力的方向,求兩個分力的大小。

      (解是唯一的) ②、已知一個分力的大小和方向,求另一個分力的大小和方向,(解是唯一的) (注意:通過作平行四邊形或三角形判斷)4、合力和分力是“等效替代”的關系。三、實驗:探究求合力的方法(或“驗證平行四邊形定則”) 第四章 牛頓運動定律 一、牛頓第一定律1、內容:(揭示物體不受力或合力為零的情形)2、兩個概念:①、力 ②、慣性:(一切物體都具有慣性,質量是慣性大小的唯一量) 二、牛頓第二定律1、內容:(不能從純數(shù)學的角度表述)2、公式:F合=ma3、理解牛頓第二定律的要點: ①、式中F是物體所受的一切外力的合力。

      ②、矢量性 ③、瞬時性 ④、獨立性 ⑤、相對性 三、牛頓第三定律 作用力和反作用力的概念1、內容2、作用力和反作用力的特點:①等值、反向、共線、異點 ②瞬時對應 ③性質相同 ④各自產生其作用效果3、一對相互作用力與一對平衡力的異同點 四、力學單位制1、力學基本物理量:長度(l) 質量(m) 時間(t) 力學基本單位: 米(m) 千克(kg) 秒(s)2、應用:用單位判斷結果表達式,能肯定錯誤(但不能肯定正確) 五、動力學的兩類問題。1、已知物體的受力情況,求物體的運動情況(v0 v t x )2、已知物體的運動情況,求物體的受力情況( F合 或某個分力)3、應用牛頓第二定律解決問題的一般思路 (1)明確研究對象。

      (2)對研究對。

      5.高中物理知識詳細總結

      高中物理公式總結 物理定理、定律、公式表 一、質點的運動(1)------直線運動 1)勻變速直線運動 1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as 3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0} 8.實驗用推論Δs=aT2 {Δs為連續(xù)相鄰相等時間(T)內位移之差} 9.主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。

      注: (1)平均速度是矢量; (2)物體速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是決定式; (4)其它相關內容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s--t圖、v--t圖/速度與速率、瞬時速度〔見第一冊P24〕。 2)自由落體運動 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh 注: (1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規(guī)律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。

      (3)豎直上拋運動 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起) 5.往返時間t=2Vo/g (從拋出落回原位置的時間) 注: (1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值; (2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性; (3)上升與下落過程具有對稱性,如在同點速度等值反向等。 二、質點的運動(2)----曲線運動、萬有引力 1)平拋運動 1.水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2 5.運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向與水平夾角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;豎直方向加速度:ay=g 注: (1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成; (2)運動時間由下落高度h(y)決定與水平拋出速度無關; (3)θ與β的關系為tgβ=2tgα; (4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。

      2)勻速圓周運動 1.線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期與頻率:T=1/f 6.角速度與線速度的關系:V=ωr 7.角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同) 8.主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心; (2)做勻速圓周運動的物體,其向心力等于合力,并且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。

      3)萬有引力 1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決于中心天體的質量)} 2.萬有引力定律:F=Gm1m2/r2 (G=6.67*10-11N?m2/kg2,方向在它們的連線上) 3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)} 4.衛(wèi)星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步衛(wèi)星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑} 注: (1)天體運動所需的向心力由萬有引力提供,F(xiàn)向=F萬; (2)應用萬有引力定律可估算天體的質量密度等; (3)地球同步衛(wèi)星只能運行于赤道上空,運行周期和地球自轉周期相同; (4)衛(wèi)星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變?。ㄒ煌矗?; (5)地球衛(wèi)星的最大環(huán)繞速度和最小發(fā)射速度均為7.9km/s。 三、力(常見的力、力的合成與分解) 1)常見的力 1.重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用于地球表面附近) 2.胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(shù)(N/m),x:形變量(m)} 3.滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數(shù),F(xiàn)N:正壓力(N)} 4.靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力) 5.萬有引力F=Gm1m2/r2 (G=6.67*10-11N?m2/kg2,方向在它。

      6.高一物理知識要點誰有

      第一章 力知識要點: 1、本專題知識點及基本技能要求 (1)力的本質 (2)重力、物體的重心 (3)彈力、胡克定律 (4)摩擦力 (5)物體受力情況分析1、力的本質:(參看例1、2、3)(1)力是物體對物體的作用。

      ※脫離物體的力是不存在的,對應一個力,有受力物體同時有施力物體。找不到施力物體的力是無中生有。

      (例如:脫離槍筒的子彈所謂向前的沖力,沿光滑平面勻速向前運動的小球受到的向前運動的力等)(2)力作用的相互性決定了力總是成對出現(xiàn): ※甲乙兩物體相互作用,甲受到乙施予的作用力的同時,甲給乙一個反作用力。作用力和反作用力,大小相等、方向相反,分別作用在兩個物體上,它們總是同種性質的力。

      (例如:圖中N與N ?均屬彈力, 均屬靜摩擦力) (3)力使物體發(fā)生形變,力改變物體的運動狀態(tài)(速度大小或速度方向改變)使物體獲得加速度。 ※這里的力指的是合外力。

      合外力是產生加速度的原因,而不是產生運動的原因。對于力的作用效果的理解,結合上定律就更明確了。

      (4)力是矢量。 ※矢量:既有大小又有方向的量,標量只有大小。

      力的作用效果決定于它的大小、方向和作用點(三要素)。大小和方向有一個不確定作用效果就無法確定,這就是既有大小又有方向的物理含意。

      (5)常見的力:根據(jù)性質命名的力有重力、彈力、摩擦力;根據(jù)作用效果命名的力有拉力、下滑力、支持力、阻力、動力等。2、重力,物體的重心(參看練習題)(1)重力是由于地球的吸引而產生的力;(2)重力的大小:G=mg,同一物體質量一定,隨著所處地理位置的變化,重力加速度的變化略有變化。

      從赤道到兩極G?大(變化千分之一),在極地G最大,等于地球與物體間的萬有引力;隨著高度的變化G?小(變化萬分之一)。在有限范圍內,在同一問題中重力認為是恒力,運動狀態(tài)發(fā)生了變化,即使在超重、失重、完全失重的狀態(tài)下重力不變;(3)重力的方向永遠豎直向下(與水平面垂直,而不是與支持面垂直);(4)物體的重心。

      物體各部分重力合力的作用點為物體的重心(不一定在物體上)。重心位置取決于質量分布和形狀,質量分布均勻的物體,重心在物體的幾何對稱中心。

      確定重心的方法:懸吊法,支持法。3、彈力、胡克定律:(參看例)(1)彈力是物體接觸伴隨形變而產生的力。

      ※彈力是接觸力 彈力產生的條件:接觸(并發(fā)生形變),有擠壓或拉伸作用。 常見的彈力:拉力,繩子的張力,壓力,支持力;(2)彈力的大小與形變程度相關。

      形變程度越重,彈力越大。(3)彈力的方向:彈力的方向與施力物體形變方向相反(是施力物體恢復形變的方向),與接觸面垂直。

      ※ 準確分析圖中A物體受到的支持力(彈力),結論:兩物體接觸發(fā)生形變,面面接觸彈力垂直面(圖1—1),點面接觸垂直面(圖1—2、1—3),接觸面是曲面,彈力則垂直于過接觸點的切面(圖1—4)。 (4)胡克定律: 內容:在彈性限度內,彈簧的彈力與彈簧伸長(或壓縮)的長度成正比。

      數(shù)學表達式:F=Kx (x長度改變量: )4、摩擦力 (1)摩擦力發(fā)生在相互接觸且擠壓有相對運動或相對運動趨勢的物體之間。 發(fā)生相對運動,阻礙相對運動的摩擦力稱為滑動摩擦力。

      有相對運動的趨勢,阻礙相對運動趨勢的摩擦力稱為靜摩擦力。 ※摩擦力是接觸力 摩擦力產生的條件:接觸、擠壓,有相對運動或相對運動趨勢存在。

      (含蓋了產生彈力的條件) (2)摩擦力的方向:總是與相對運動或相對運動趨勢方向相反,與接觸面相切。 ※判斷相對運動方向,或相對運動趨勢方向是確定摩擦力方向的關鍵。

      當根據(jù)摩擦力產生的條件,確定存在摩擦力時,以此力的施力物體為參照物,判斷受力物體相對運動(或相對運動趨勢)方向,摩擦力方向與相對運動(或相對運動趨勢)方向相反,從而找到摩擦力的方向:(見例) 物塊A放在小車B上,置于水平面上: a、沒加任何力:A、B處于靜平衡狀態(tài),由于A、B受重力作用,A與B接觸,車輪與地面接觸,并均有擠壓,但無相對運動,也沒相對運動趨勢存在,無摩擦力產生。 b、A物體上加一個水平力 ,AB處于靜止狀態(tài)。

      分析A,由于受到力 的作用,以B為參照物,A相對B有向右的趨勢,所以受到與趨勢相反的靜摩擦 。 根據(jù)作用力反作用力的關系,小車B受到水平A拖予的靜摩擦力 。

      小車B受到水平向右的靜摩力 的作用,相對地面有向右的運動趨勢,但沒動,受到地面施予的與運動趨勢方向相反的靜摩擦力 (結論: )。 C、A物體受到水平向右的力F作用,A、B相對靜止,一起沿水平向右加速運動: 分析A物體:仍受到一個拉力F和B施予的靜摩擦力 。

      ( )。 分析B物體:受到A施予的 的反作用力 的同時,AB相對地面向右運動,地面給B物體一個向左的滑動摩擦力 。

      (據(jù)題意: ) 小車B受到 靜摩擦力的作用,在小車向右加速運動的過程中, 與B小車運動方向相同; 不但對B做功,而且做的還是正功;在效果上起著動力的作用。(3)摩擦力的大小 滑動摩擦力 , 為正壓力 靜摩擦力是一組值,其中有一個最大值,稱為最大靜摩擦(使物體開始運動時的靜摩擦力)。

      不能用 來計算,只能根據(jù)。

      7.高中物理知識點總結大全

      一、質點的運動(1)------直線運動 1)勻變速直線運動 1.平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as 3.中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2時:F=(F12+F22)1/2 3.合力大小范圍:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,F(xiàn)y=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx) 注: (1)力(矢量)的合成與分解遵循平行四邊形定則; (2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖; (4)F1與F2的值一定時,F(xiàn)1與F2的夾角(α角)越大,合力越小; (5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數(shù)運算. 四、動力學(運動和力) 1.牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態(tài)或靜止狀態(tài),直到有外力迫使它改變這種狀態(tài)為止 2.牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致} 3.牛頓第三運動定律:F=-F′{負號表示方向相反,F(xiàn)、F′各自作用在對方,平衡力與作用力反作用力區(qū)別,實際應用:反沖運動} 4.共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理} 5.超重:FN>G,失重:FNr} 3.受迫振動頻率特點:f=f驅動力 4.發(fā)生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕 5.機械波、橫波、縱波〔見第二冊P2〕 6.波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定} 7.聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波) 8.波發(fā)生明顯衍射(波繞過障礙物或孔繼續(xù)傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大 9.波的干涉條件:兩列波頻率相同(相差恒定、振幅相近、振動方向相同) 10.多普勒效應:由于波源與觀測者間的相互運動,導致波源發(fā)射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕} 注: (1)物體的固有頻率與振幅、驅動力頻率無關,取決于振動系統(tǒng)本身; (2)加強區(qū)是波峰與波峰或波谷與波谷相遇處,減弱區(qū)則是波峰與波谷相遇處; (3)波只是傳播了振動,介質本身不隨波發(fā)生遷移,是傳遞能量的一種方式; (4)干涉與衍射是波特有的; (5)振動圖象與波動圖象; (6)其它相關內容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕. 六、沖量與動量(物體的受力與動量的變化) 1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同} 3.沖量:I=Ft {I:沖量(N?s),F:恒力(N),t:力的作用時間(s),方向由F決定} 4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式} 5.動量守恒定律:p前總=p后總或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′ 6.彈性碰撞:Δp=0;ΔEk=0 {即系統(tǒng)的動量和動能均守恒} 7.非彈性碰撞Δp=0;00 (6)物體的內能是指物體所有的分子動能和分子勢能的總和,對于理想氣體分子間作用力為零,分子勢能為零; (7)r0為分子處于平衡狀態(tài)時,分子間的距離; (8)其它相關內容:能的轉化和定恒定律〔見第二冊P41〕/能源的開發(fā)與利用、環(huán)保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕. 九、氣體的性質 1.氣體的狀態(tài)參量: 溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規(guī)則運動的劇烈程度的標志, 熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)} 體積V:氣體分子所能占據(jù)的空間,單位換算:1m3=103L=106mL 壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續(xù)、均勻的壓力,標準大氣壓:1atm=1.013*105Pa=76cmHg(1Pa=1N/m2) 2.氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大 3.理想氣體的狀態(tài)方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T為熱力學溫度(K)} 注: (1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關; (2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K). 十、電場 1.兩種電荷、電荷守恒定律、元電荷:(e=1.60*10-19C);帶電體電荷量等于元電荷的整數(shù)倍 2.庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0*109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引} 3.電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)} 4.真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量} 5.勻強電場的場強E=UAB/。

      8.高一物理知識總結

      物理知識點復習提綱(一)(人教版必修1適用)專題一:運動的描述【知識要點】1.質點(A)(1)沒有形狀、大小,而具有質量的點。

      (2)質點是一個理想化的物理模型,實際并不存在。(3)一個物體能否看成質點,并不取決于這個物體的大小,而是看在所研究的問題中物體的形狀、大小和物體上各部分運動情況的差異是否為可以忽略的次要因素,要具體問題具體分析。

      2.參考系(A)(1)物體相對于其他物體的位置變化,叫做機械運動,簡稱運動。(2)在描述一個物體運動時,選來作為標準的(即假定為不動的)另外的物體,叫做參考系。

      對參考系應明確以下幾點:①對同一運動物體,選取不同的物體作參考系時,對物體的觀察結果往往不同的。②在研究實際問題時,選取參考系的基本原則是能對研究對象的運動情況的描述得到盡量的簡化,能夠使解題顯得簡捷。

      ③因為今后我們主要討論地面上的物體的運動,所以通常取地面作為參照系3.路程和位移(A)(1)位移是表示質點位置變化的物理量。路程是質點運動軌跡的長度。

      (2)位移是矢量,可以用以初位置指向末位置的一條有向線段來表示。因此,位移的大小等于物體的初位置到末位置的直線距離。

      路程是標量,它是質點運動軌跡的長度。因此其大小與運動路徑有關。

      (3)一般情況下,運動物體的路程與位移大小是不同的。只有當質點做單一方向的直線運動時,路程與位移的大小才相等。

      圖1-1中質點軌跡ACB的長度是路程,AB是位移S。(4)在研究機械運動時,位移才是能用來描述位置變化的物理量。

      路程不能用來表達物體的確切位置。比如說某人從O點起走了50m路,我們就說不出終了位置在何處。

      4、速度、平均速度和瞬時速度(A)(1)表示物體運動快慢的物理量,它等于位移s跟發(fā)生這段位移所用時間t的比值。即v=s/t。

      速度是矢量,既有大小也有方向,其方向就是物體運動的方向。在國際單位制中,速度的單位是(m/s)米/秒。

      (2)平均速度是描述作變速運動物體運動快慢的物理量。一個作變速運動的物體,如果在一段時間t內的位移為s, 則我們定義v=s/t為物體在這段時間(或這段位移)上的平均速度。

      平均速度也是矢量,其方向就是物體在這段時間內的位移的方向。(3)瞬時速度是指運動物體在某一時刻(或某一位置)的速度。

      從物理含義上看,瞬時速度指某一時刻附近極短時間內的平均速度。瞬時速度的大小叫瞬時速率,簡稱速率5、勻速直線運動(A)(1) 定義:物體在一條直線上運動,如果在相等的時間內位移相等,這種運動叫做勻速直線運動。

      根據(jù)勻速直線運動的特點,質點在相等時間內通過的位移相等,質點在相等時間內通過的路程相等,質點的運動方向相同,質點在相等時間內的位移大小和路程相等。(2) 勻速直線運動的x—t圖象和v-t圖象(A)(1)位移圖象(s-t圖象)就是以縱軸表示位移,以橫軸表示時間而作出的反映物體運動規(guī)律的數(shù)學圖象,勻速直線運動的位移圖線是通過坐標原點的一條直線。

      (2)勻速直線運動的v-t圖象是一條平行于橫軸(時間軸)的直線,如圖2-4-1所示。由圖可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一個質點沿正方向以20m/s的速度運動,另一個反方向以10m/s速度運動。

      6、加速度(A)(1)加速度的定義:加速度是表示速度改變快慢的物理量,它等于速度的改變量跟發(fā)生這一改變量所用時間的比值,定義式:a= (2)加速度是矢量,它的方向是速度變化的方向(3)在變速直線運動中,若加速度的方向與速度方向相同,則質點做加速運動; 若加速度的方向與速度方向相反,則則質點做減速運動.7、用電火花計時器(或電磁打點計時器)研究勻變速直線運動(A)1、實驗步驟:(1)把附有滑輪的長木板平放在實驗桌上,將打點計時器固定在平板上,并接好電路(2)把一條細繩拴在小車上,細繩跨過定滑輪,下面吊著重量適當?shù)你^碼.(3)將紙帶固定在小車尾部,并穿過打點計時器的限位孔(4)拉住紙帶,將小車移動至靠近打點計時器處,先接通電源,后放開紙帶.(5)斷開電源,取下紙帶(6)換上新的紙帶,再重復做三次2、常見計算:(1) , (2) 8、勻變速直線運動的規(guī)律(A)(1).勻變速直線運動的速度公式vt=vo+at(減速:vt=vo-at)(2). 此式只適用于勻變速直線運動.(3). 勻變速直線運動的位移公式s=vot+at2/2(減速:s=vot-at2/2)(4)位移推論公式: (減速: )(5).初速無論是否為零,勻變速直線運動的質點,在連續(xù)相鄰的相等的時間間隔內的位移之差為一常數(shù): s = aT2 (a----勻變速直線運動的加速度 T----每個時間間隔的時間)9、勻變速直線運動的x—t圖象和v-t圖象(A)10、自由落體運動(A)(1) 自由落體運動物體只在重力作用下從靜止開始下落的運動,叫做自由落體運動。(2) 自由落體加速度(1)自由落體加速度也叫重力加速度,用g表示.(2)重力加速度是由于地球的引力產生的,因此,它的方向總是豎直向下.其大小在地球上不同地方略有不,在地球表面,緯度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但這種差異并不大。

      (3)通常情況下取重力加。

      高中物理學常識

      聲明:沿途百知所有(內容)均由用戶自行上傳分享,僅供網友學習交流。若您的權利被侵害,請聯(lián)系我們將盡快刪除