1.數(shù)學知識點總結(jié)
一、基本知識 一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù) 數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。 減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。 2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3、代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。 分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。 B、方程與不等式 1、方程與方程組 一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。 二元一次方程組中各個方程。
2.關(guān)于數(shù)學的小知識
楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
… … … … …
楊輝三角最本質(zhì)的特征是,它的兩條斜邊都是由數(shù)字1組成的,而其余的數(shù)則是等于它肩上的兩個數(shù)之和。其實,中國古代數(shù)學家在數(shù)學的許多重要領域中處于遙遙領先的地位。中國古代數(shù)學史曾經(jīng)有自己光輝燦爛的篇章,而楊輝三角的發(fā)現(xiàn)就是十分精彩的一頁。楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章算法》一書中,輯錄了如上所示的三角形數(shù)表,稱之為“開方作法本源”圖。而這樣一個三角在我們的奧數(shù)競賽中也是經(jīng)常用到,最簡單的就是叫你找規(guī)律?,F(xiàn)在要求我們用編程的方法輸出這樣的數(shù)表。
同時 這也是多項式(a+b)^n 打開括號后的各個項的二次項系數(shù)的規(guī)律 即為
0 (a+b)^0 (0 nCr 0)
1 (a+b)^1 (1 nCr 0) (1 nCr 1)
2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2)
3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3)
. 。 。 。 。 。
因此 楊輝三角第x層第y項直接就是 (y nCr x)
我們也不難得到 第x層的所有項的總和 為 2^x (即(a+b)^x中a,b都為1的時候)
[ 上述y^x 指 y的 x次方;(a nCr b) 指 組合數(shù)]
其實,中國古代數(shù)學家在數(shù)學的許多重要領域中處于遙遙領先的地位。中國古代數(shù)學史曾經(jīng)有自己光輝燦爛的篇章,而楊輝三角的發(fā)現(xiàn)就是十分精彩的一頁。
楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章算法》一書中,輯錄了如上所示的三角形數(shù)表,稱之為“開方作法本源”圖。
而這樣一個三角在我們的奧數(shù)競賽中也是經(jīng)常用到,最簡單的就是叫你找規(guī)律。具體的用法我們會在教學內(nèi)容中講授。
在國外,這也叫做"帕斯卡三角形".
3.數(shù)學小知識
1、在生活中,我們經(jīng)常會用到0、1、2、3、4、5、6、7、8、9這些數(shù)字。
那么你知道這些數(shù)字是誰發(fā)明的嗎? 這些數(shù)字符號原來是古代印度人發(fā)明的,后來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發(fā)明的,就把它們叫做“阿拉伯數(shù)字”,因為流傳了許多年,人們叫得順口,所以至今人們?nèi)匀粚㈠e就錯,把這些古代印度人發(fā)明的數(shù)字符號叫做阿拉伯數(shù)字。 現(xiàn)在,阿拉伯數(shù)字已成了全世界通用的數(shù)字符號。
2、九九歌就是我們現(xiàn)在使用的乘法口訣。 遠在公元前的春秋戰(zhàn)國時代,九九歌就已經(jīng)被人們廣泛使用。
在當時的許多著作中,都有關(guān)于九九歌的記載。最初的九九歌是從“九九八十一”起到“二二得四”止,共36句。
因為是從“九九八十一”開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到“一一得一”。
大約在公元十三、十四世紀,九九歌的順序才變成和現(xiàn)在所用的一樣,從“一一得一”起到“九九八十一”止。 現(xiàn)在我國使用的乘法口訣有兩種,一種是45句的,通常稱為“小九九”;還有一種是81句的,通常稱為“大九九”。
3、圓形,是一個看來簡單,實際上是很奇妙的圓形。 古代人最早是從太陽,從陰歷十五的月亮得到圓的概念的。
就是現(xiàn)在也還用日、月來形容一些圓的東西,如月門、月琴、日月貝、太陽珊瑚等等。 是什么人作出第一個圓呢? 十幾萬年前的古人作的石球已經(jīng)相當圓了。
前面說過,一萬八千年前的山頂洞人曾經(jīng)在獸牙、礫石和石珠上鉆孔,那些孔有的就很圓。 山頂洞人是用一種尖狀器轉(zhuǎn)著鉆孔的,一面鉆不透,再從另一面鉆。
石器的尖是圓心,它的寬度的一半就是半徑,一圈圈地轉(zhuǎn)就可以鉆出一個圓的孔。 以后到了陶器時代,許多陶器都是圓的。
圓的陶器是將泥土放在一個轉(zhuǎn)盤上制成的。 當人們開始紡線,又制出了圓形的石紡綞或陶紡綞。
6000年前的半坡人(在西安)會建造圓形的房子,面積有十多平方米。 古代人還發(fā)現(xiàn)圓的木頭滾著走比較省勁。
后來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。當然了,因為圓木不是固定在重物下面的,走一段,還得把后面滾出來的圓木滾到前面去,墊在重物前面部分的下方。
大約在6000年前,美索不達米亞人,做出了世界上第一個輪子--圓的木盤。 大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。
因為輪子的圓心是固定在一根軸上的,而圓心到圓周總是等長的,所以只要道路平坦,車子就可以平衡地前進了。 會作圓,但不一定就懂得圓的性質(zhì)。
古代埃及人就認為:圓,是神賜給人的神圣圖形。一直到兩千多年前我國的墨子(約公元前468-前376年)才給圓下了一個定義:"一中同長也"。
意思是說:圓有一個圓心,圓心到圓周的長都相等。這個定義比希臘數(shù)學家歐幾里得(約公元前330-前275年)給圓下定義要早100年。
圓周率,也就是圓周與直徑的比值,是一個非常奇特的數(shù)。 《周髀算經(jīng)》上說"徑一周三",把圓周率看成3,這只是一個近似值。
美索不達來亞人在作第一個輪子的時候,也只知道圓周率是3。 魏晉時期的劉徽于公元263年給《九章算術(shù)》作注。
他發(fā)現(xiàn)"徑一周三"只是圓內(nèi)接正六邊形周長和直徑的比值。他創(chuàng)立了割圓術(shù),認為圓內(nèi)接正多連形邊數(shù)無限增加時,周長就越逼近圓周長。
他算到圓內(nèi)接正3072邊形的圓周率,π= 3927/1250,請你將它換算成小數(shù),看約等于多少? 劉徽已經(jīng)把極限的概念運用于解決實際的數(shù)學問題之中,這在世界數(shù)學史上也是一項重大的成就。 祖沖之(公元429-500年)在前人的計算基礎上繼續(xù)推算,求出圓周率在3.1415926與3.1415927之間是世界上最早的七位小數(shù)精確值,他還用兩個分數(shù)值來表示圓周率:22/7稱為約率,355/113稱為密率。
請你將這兩個分數(shù)換成小數(shù),看它們與今天已知的圓周率有幾位小數(shù)數(shù)字相同? 在歐洲,直到1000年后的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數(shù)值。 現(xiàn)在有了電子計算機,圓周率已經(jīng)算到了小數(shù)點后一千萬以上了。
4、數(shù)學除了記數(shù)以外,還需要一套數(shù)學符號來表示數(shù)和數(shù)、數(shù)和形的相互關(guān)系。 數(shù)學符號的發(fā)明和使用比數(shù)字晚,但是數(shù)量多得多。
現(xiàn)在常用的有200多個,初中數(shù)學書里就不下20多種。它們都有一段有趣的經(jīng)歷。
例如加號曾經(jīng)有好幾種,現(xiàn)在通用"+"號。 "+"號是由拉丁文"et"("和"的意思)演變而來的。
十六世紀,意大利科學家塔塔里亞用意大利文"più"(加的意思)的第一個字母表示加,草為"μ"最后都變成了"+"號。 "-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。
也有人說,賣酒的商人用"-"表示酒桶里的酒賣了多少。以后,當把新酒灌入大桶的時候,就在"-"上加一豎,意思是把原線條勾銷,這樣就成了個"+"號。
到了十五世紀,德國數(shù)學家魏德美正式確定:"+"用作加號,"-"用作減號。 乘號曾經(jīng)用過十幾種,現(xiàn)在通用兩種。
一個是"*",最早是英國數(shù)學家奧屈特1631年提出的;一個是"· ",最早是英國數(shù)學家赫銳奧特首創(chuàng)的。德國數(shù)學家萊布尼茨認為:"*"。
4.有關(guān)數(shù)學的小知識
對于那些成績較差的小學生來說,學習小學數(shù)學都有很大的難度,其實小學數(shù)學屬于基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養(yǎng)成良好習慣的時期,注重培養(yǎng)孩子的習慣和學習能力是重要的一方面,那小學數(shù)學有哪些技巧?
一、重視課內(nèi)聽講,課后及時進行復習.
新知識的接受和數(shù)學能力的培養(yǎng)主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,并及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養(yǎng)成解決問題的好習慣.
如果你想學好數(shù)學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反復練習基本知識,然后找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準備一個用于收集的錯題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態(tài)并在考試中自由使用.
三、調(diào)整心態(tài)并正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數(shù)測試出于基本問題,較難的題目也是出自于基本.所以只有調(diào)整學習的心態(tài),盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正?;蛘叱0l(fā)揮.
由此可見小學數(shù)學的技巧就是多做練習題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調(diào)整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數(shù)學的海洋中去.
5.數(shù)學常識
數(shù)學小常識(轉(zhuǎn)載) [ 2007-11-28 12:58:00 | By: gnwz ] 數(shù)學小常識1.悖論: (1)羅素悖論 一天,薩維爾村理發(fā)師掛出了一塊招牌:村里所有不自己理發(fā)的男人都由我給他們理發(fā)。
于是有人問他:“您的頭發(fā)誰給理呢?”理發(fā)師頓時啞口無言。 1874年,德國數(shù)學家康托爾創(chuàng)立了集合論,很快滲透到大部分數(shù)學分支,成為它們的基礎。
到十九世紀末,全部數(shù)學幾乎都建立在集合論的基礎上了。就在這時,集合論接連出現(xiàn)了一系列自相矛盾的結(jié)果。
特別是1902年羅素提出理發(fā)師故事反映的悖論,它極為簡單、明確、通俗。于是,數(shù)學的基礎被動搖了,這就是所謂的第三次“數(shù)學危機”。
此后,為了克服這些悖論,數(shù)學家們做了大量研究工作,由此產(chǎn)生了大批新成果,也帶來了數(shù)學觀念的革命。 (2)說謊者悖論: “我正在說的這句話是慌話?!?/p>
公元前四世紀的希臘數(shù)學家歐幾里德提出的這個悖論,至今還在困擾著數(shù)學家和邏輯學家。這就是著名的說慌者悖論。
類似的悖論最早是在公元前六世紀出現(xiàn)的,當時克里特島哲學家愛皮梅尼特曾說過:“所有的克里特島人都說慌?!痹谥袊糯赌?jīng)》中,也有一句十分相似的話:“以言為盡悖,悖,說在其言?!?/p>
意思是:以為所有的話都是錯的,這是錯的,因為這本身就是一句話。 說慌者悖論有多種變化形式,例如,在同一張紙上寫出下列兩句話: 下一句話是慌話。
上一句話是真話。 更有趣的是下面的對話。
甲對乙說:“你下面要講的是‘不’,對不對?請用‘是’或‘不’來回答!” 還有一個例子。有個虔誠的教徒,他在演說中口口聲聲說上帝是無所不能的,什么事都做得到。
一位過路人問了一句話:“上帝能創(chuàng)造一塊他自己也舉不起來的石頭嗎?” 2.阿拉伯數(shù)字 在生活中,我們經(jīng)常會用到0、1、2、3、4、5、6、7、8、9這些數(shù)字。那么你知道這些數(shù)字是誰發(fā)明的嗎? 這些數(shù)字符號原來是古代印度人發(fā)明的,后來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發(fā)明的,就把它們叫做“阿拉伯數(shù)字”,因為流傳了許多年,人們叫得順口,所以至今人們?nèi)匀粚㈠e就錯,把這些古代印度人發(fā)明的數(shù)字符號叫做阿拉伯數(shù)字。
現(xiàn)在,阿拉伯數(shù)字已成了全世界通用的數(shù)字符號。
6.小學數(shù)學知識點總結(jié)人教版
第一章 數(shù)和數(shù)的運算 一 概念 (一)整數(shù)1 整數(shù)的意義 自然數(shù)和0都是整數(shù)。
2 自然數(shù) 我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。 一個物體也沒有,用0表示。
0也是自然數(shù)。 3計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。
每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。
4 數(shù)位 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 5數(shù)的整除 整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。
如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。
例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。
3的倍數(shù)有:3、6、9、12……其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。
一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數(shù)叫做偶數(shù)。 不能被2整除的數(shù)叫做奇數(shù)。
0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。
一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。 一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。
1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。
每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3*5,3和5 叫做15的質(zhì)因數(shù)。
把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。例如把28分解質(zhì)因數(shù) 幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。
其中最大的一個,叫做這幾個數(shù)的最大公約數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數(shù),6是它們的最大公約數(shù)。
公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:1和任何自然數(shù)互質(zhì)。相鄰的兩個自然數(shù)互質(zhì)。
兩個不同的質(zhì)數(shù)互質(zhì)。當合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。
兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。
如果兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6 、8、10、12、14、16、18 ……3的倍數(shù)有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數(shù),6是它們的最小公倍數(shù)。
如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。
如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。 幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。
(二)小數(shù)1 小數(shù)的意義 把整數(shù)1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數(shù)表示。 一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾…… 一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。
數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。
小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。 2小數(shù)的分類 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。
例如: 0.25 、0.368 都是純小數(shù)。 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。
例如: 3.25 、5.26 都是帶小數(shù)。有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。
例如: 41.7 、25.3 、0.23 都是有限小數(shù)。無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。
例如: 4.33 …… 3.1415926 …… 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的。
7.初中數(shù)學最全知識點
初中數(shù)學知識點總結(jié) 一、基本知識 一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù) 數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。 減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。 2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3、代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。 分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。 B、方程與不等式 1、方程與方程組 一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。 二元。