1.有關(guān)數(shù)學(xué)的小知識
對于那些成績較差的小學(xué)生來說,學(xué)習(xí)小學(xué)數(shù)學(xué)都有很大的難度,其實小學(xué)數(shù)學(xué)屬于基礎(chǔ)類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學(xué),是一個需要養(yǎng)成良好習(xí)慣的時期,注重培養(yǎng)孩子的習(xí)慣和學(xué)習(xí)能力是重要的一方面,那小學(xué)數(shù)學(xué)有哪些技巧?一、重視課內(nèi)聽講,課后及時進行復(fù)習(xí).新知識的接受和數(shù)學(xué)能力的培養(yǎng)主要是在課堂上進行的,所以我們必須特別注意課堂學(xué)習(xí)的效率,尋找正確的學(xué)習(xí)方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預(yù)測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學(xué)習(xí)技能,并及時審查它們以避免疑慮.首先,在進行各種練習(xí)之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.二、多做習(xí)題,養(yǎng)成解決問題的好習(xí)慣.如果你想學(xué)好數(shù)學(xué),你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反復(fù)練習(xí)基本知識,然后找一些課外活動,幫助開拓思路練習(xí),提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準備一個用于收集的錯題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習(xí)慣.學(xué)會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態(tài)并在考試中自由使用.三、調(diào)整心態(tài)并正確對待考試.首先,主要的重點應(yīng)放在基礎(chǔ)、基本技能、基本方法,因為大多數(shù)測試出于基本問題,較難的題目也是出自于基本.所以只有調(diào)整學(xué)習(xí)的心態(tài),盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習(xí)題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎(chǔ)題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正?;蛘叱0l(fā)揮.由此可見小學(xué)數(shù)學(xué)的技巧就是多做練習(xí)題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調(diào)整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數(shù)學(xué)的海洋中去。
2.求小學(xué)數(shù)學(xué)知識點總結(jié)(要全的,拜托了)
常用的數(shù)量關(guān)系式1、每份數(shù)*份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù) 2、1倍數(shù)*倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù) 3、速度*時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價*數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價 5、工作效率*工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù)7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù) 8、因數(shù)*因數(shù)=積 積÷一個因數(shù)=另一個因數(shù) 9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商*除數(shù)=被除數(shù) 小學(xué)數(shù)學(xué)圖形計算公式 1、正方形 (C:周長 S:面積 a:邊長 )周長=邊長*4 C=4a 面積=邊長*邊長 S=a*a 2、正方體 (V:體積 a:棱長 )表面積=棱長*棱長*6 S表=a*a*6 體積=棱長*棱長*棱長 V=a*a*a 3、長方形( C:周長 S:面積 a:邊長 )周長=(長+寬)*2 C=2(a+b) 面積=長*寬 S=ab 4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)(1)表面積(長*寬+長*高+寬*高)*2 S=2(ab+ah+bh) (2)體積=長*寬*高 V=abh 5、三角形 (s:面積 a:底 h:高) 面積=底*高÷2 s=ah÷2 三角形高=面積 *2÷底 三角形底=面積 *2÷高 6、平行四邊形 (s:面積 a:底 h:高) 面積=底*高 s=ah 7、梯形 (s:面積 a:上底 b:下底 h:高) 面積=(上底+下底)*高÷2 s=(a+b)* h÷28、圓形 (S:面積 C:周長 л d=直徑 r=半徑) (1)周長=直徑*л=2*л*半徑 C=лd=2лr (2)面積=半徑*半徑*л9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長) (1)側(cè)面積=底面周長*高=ch(2лr或лd) (2)表面積=側(cè)面積+底面積*2 (3)體積=底面積*高 (4)體積=側(cè)面積÷2*半徑10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑) 體積=底面積*高÷3 11、總數(shù)÷總份數(shù)=平均數(shù) 12、和差問題的公式:(和+差)÷2=大數(shù) (和-差)÷2=小數(shù) 13、和倍問題: 和÷(倍數(shù)-1)=小數(shù) 小數(shù)*倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù))14、差倍問題: 差÷(倍數(shù)-1)=小數(shù) 小數(shù)*倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù)) 15、相遇問題 相遇路程=速度和*相遇時間;相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間 16、濃度問題 溶質(zhì)的重量+溶劑的重量=溶液的重量 溶質(zhì)的重量÷溶液的重量*100%=濃度 溶液的重量*濃度=溶質(zhì)的重量 溶質(zhì)的重量÷濃度=溶液的重量17、利潤與折扣問題 利潤=售出價-成本; 利潤÷成本*100%=(售出價÷成本-1)*100% 漲跌金額=本金*漲跌百分比;利息=本金*利率*時間; 稅后利息=本金*利率*時間*(1-20%) 常用單位換算 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算:1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算: 1元=10角 1角=10分 1元=100分 時間單位換算:1世紀=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 數(shù)和數(shù)的運算 一 概念 (一)整數(shù) 1、整數(shù)的意義: 自然數(shù)和0都是整數(shù)。
2、自然數(shù):我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。 一個物體也沒有,用0表示。
0也是自然數(shù)。 3、計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。
每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。
4、數(shù)位: 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 5、數(shù)的整除 整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。
如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。
例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。
3的倍數(shù)有:3、6、9、12……其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。 個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。
一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8。
3.人教版初中數(shù)學(xué)所學(xué)的所有知識點歸納
展開全部 常見的初中數(shù)學(xué)公式 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應(yīng)邊、對應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)*180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個角都是直角 61矩形性質(zhì)定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a*b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關(guān)于中心對稱的兩個圖形是全等的 72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直。
4.初中數(shù)學(xué)知識點總結(jié)
證明兩線段相等 1.兩全等三角形中對應(yīng)邊相等。
2.同一三角形中等角對等邊。 3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或?qū)蔷€被交點分成的兩段相等。 5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。 7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行于第三邊的直線分第二邊所成的線段相等。 *9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
*10.圓外一點引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。 11.兩前項(或兩后項)相等的比例式中的兩后項(或兩前項)相等。
*12.兩圓的內(nèi)(外)公切線的長相等。 13.等于同一線段的兩條線段相等。
證明兩個角相等 1.兩全等三角形的對應(yīng)角相等。 2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。 4.兩條平行線的同位角、內(nèi)錯角或平行四邊形的對角相等。
5.同角(或等角)的余角(或補角)相等。 *6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。
*7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。 8.相似三角形的對應(yīng)角相等。
*9.圓的內(nèi)接四邊形的外角等于內(nèi)對角。10.等于同一角的兩個角相等 證明兩直線平行 1.垂直于同一直線的各直線平行。
2.同位角相等,內(nèi)錯角相等或同旁內(nèi)角互補的兩直線平行。 3.平行四邊形的對邊平行。
4.三角形的中位線平行于第三邊。 5.梯形的中位線平行于兩底。
6.平行于同一直線的兩直線平行。 7.一條直線截三角形的兩邊(或延長線)所得的線段對應(yīng)成比例,則這條直線平行于第三邊。
證明兩條直線互相垂直 1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。 2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。 4.鄰補角的平分線互相垂直。
5.一條直線垂直于平行線中的一條,則必垂直于另一條。 6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。 8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。 *10.在圓中平分弦(或?。┑闹睆酱怪庇谙?。
*11.利用半圓上的圓周角是直角。 證明線段的和差倍分 1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。 3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等于短線段。 5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。
證明 角的和差倍分 1.與證明線段的和、差、倍、分思路相同。 2.利用角平分線的定義。
3.三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。 證明線段不等 1.同一三角形中,大角對大邊。
2.垂線段最短。 3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。 *5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。 證明兩角的不等 1.同一三角形中,大邊對大角。
2.三角形的外角大于和它不相鄰的任一內(nèi)角。 3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
*4.同圓或等圓中,弧大則圓周角、圓心角大。 5.全量大于它的任何一部分。
證明比例式或等積式 1.利用相似三角形對應(yīng)線段成比例。 2.利用內(nèi)外角平分線定理。
3.平行線截線段成比例。 4.直角三角形中的比例中項定理即射影定理。
*5.與圓有關(guān)的比例定理---相交弦定理、切割線定理及其推論。 6.利用比利式或等積式化得。
證明四點共圓 *1.對角互補的四邊形的頂點共圓。 *2.外角等于內(nèi)對角的四邊形內(nèi)接于圓。
*3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側(cè))。 *4.同斜邊的直角三角形的頂點共圓。
*5.到頂點距離相等的各點共圓。 (“*”代表重要) 請問、這種符合麼。
呵呵、希望能夠幫到你。
5.20個字的數(shù)學(xué)小知識
人們把12345679叫做“缺8數(shù)”,這“缺8數(shù)”有許多讓人驚訝的特點,比如用9的倍數(shù)與它相乘,乘積竟會是由同一個數(shù)組成,人們把這叫做“清一色”。比如:
12345679*9=111111111
12345679*18=222222222
12345679*27=333333333
……
12345679*81=999999999
這些都是9的1倍至9的9倍的。
還有99、108、117至171。最后,得出的答案是:
12345679*99=1222222221
12345679*108=1333333332
12345679*117=1444444443
… …
12345679*171=2111111109
也是“清一色
6.有關(guān)數(shù)學(xué)的小知識
阿拉伯?dāng)?shù)字
在生活中,我們經(jīng)常會用到0、1、2、3、4、5、6、7、8、9這些數(shù)字。那么你知道這些數(shù)字是誰發(fā)明的嗎?
這些數(shù)字符號原來是古代印度人發(fā)明的,后來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發(fā)明的,就把它們叫做"阿拉伯?dāng)?shù)字",因為流傳了許多年,人們叫得順口,所以至今人們?nèi)匀粚㈠e就錯,把這些古代印度人發(fā)明的數(shù)字符號叫做阿拉伯?dāng)?shù)字。
現(xiàn)在,阿拉伯?dāng)?shù)字已成了全世界通用的數(shù)字符
1.、王菊珍的百分數(shù)
我國科學(xué)家王菊珍對待實驗失敗有句格言,叫做“干下去還有50%成功的希望,不干便是100%的失敗?!?
2、托爾斯泰的分數(shù)
俄國大文豪托爾斯泰在談到人的評價時,把人比作一個分數(shù)。他說:“一個人就好像一個分數(shù),他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數(shù)的值就越小?!?
1、數(shù)學(xué)的本質(zhì)在於它的自由. 康扥爾(Cantor)
2、在數(shù)學(xué)的領(lǐng)域中, 提出問題的藝術(shù)比解答問題的藝術(shù)更為重要. 康扥爾(Cantor)
3、沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產(chǎn)生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明. 希爾伯特(Hilbert)
4、數(shù)學(xué)是無窮的科學(xué). 赫爾曼外爾
5、問題是數(shù)學(xué)的心臟. P.R.Halmos
6、只要一門科學(xué)分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預(yù)示著獨立發(fā)展的終止或衰 亡. Hilbert
7、數(shù)學(xué)中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深. 高斯
3、雷巴柯夫的常數(shù)與變數(shù)
俄國歷史學(xué)家雷巴柯夫在利用時間方面是這樣說的:“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍?!?
二、用符號寫格言
4、華羅庚的減號
我國著名數(shù)學(xué)家華羅庚在談到學(xué)習(xí)與探索時指出:“在學(xué)習(xí)中要敢于做減法,就是減去前人已經(jīng)解決的部分,看看還有那些問題沒有解決,需要我們?nèi)ヌ剿鹘鉀Q?!?
5、愛迪生的加號
大發(fā)明家愛迪生在談天才時用一個加號來描述,他說:“天才=1%的靈感+99%的血汗。”
6、季米特洛夫的正負號
著名的國際工人運動活動家季米特洛夫在評價一天的工作時說:“要利用時間,思考一下一天之中做了些什么,是‘正號’還是‘負號’,倘若是‘+’,則進步;倘若是‘-’,就得吸取教訓(xùn),采取措施?!?
三、用公式寫的格言
7、愛因斯坦的公式
近代最偉大的科學(xué)家愛因斯坦在談成功的秘訣時,寫下一個公式:A=x+y+z。并解釋道:A代表成功,x代表艱苦的勞動,y代表正確的方法,Z代表少說空話?!?/p>