1.數(shù)學(xué)常識
數(shù)學(xué)小常識(轉(zhuǎn)載) [ 2007-11-28 12:58:00 | By: gnwz ] 數(shù)學(xué)小常識1.悖論: (1)羅素悖論 一天,薩維爾村理發(fā)師掛出了一塊招牌:村里所有不自己理發(fā)的男人都由我給他們理發(fā)。
于是有人問他:“您的頭發(fā)誰給理呢?”理發(fā)師頓時啞口無言。 1874年,德國數(shù)學(xué)家康托爾創(chuàng)立了集合論,很快滲透到大部分?jǐn)?shù)學(xué)分支,成為它們的基礎(chǔ)。
到十九世紀(jì)末,全部數(shù)學(xué)幾乎都建立在集合論的基礎(chǔ)上了。就在這時,集合論接連出現(xiàn)了一系列自相矛盾的結(jié)果。
特別是1902年羅素提出理發(fā)師故事反映的悖論,它極為簡單、明確、通俗。于是,數(shù)學(xué)的基礎(chǔ)被動搖了,這就是所謂的第三次“數(shù)學(xué)危機”。
此后,為了克服這些悖論,數(shù)學(xué)家們做了大量研究工作,由此產(chǎn)生了大批新成果,也帶來了數(shù)學(xué)觀念的革命。 (2)說謊者悖論: “我正在說的這句話是慌話?!?/p>
公元前四世紀(jì)的希臘數(shù)學(xué)家歐幾里德提出的這個悖論,至今還在困擾著數(shù)學(xué)家和邏輯學(xué)家。這就是著名的說慌者悖論。
類似的悖論最早是在公元前六世紀(jì)出現(xiàn)的,當(dāng)時克里特島哲學(xué)家愛皮梅尼特曾說過:“所有的克里特島人都說慌。”在中國古代《墨經(jīng)》中,也有一句十分相似的話:“以言為盡悖,悖,說在其言?!?/p>
意思是:以為所有的話都是錯的,這是錯的,因為這本身就是一句話。 說慌者悖論有多種變化形式,例如,在同一張紙上寫出下列兩句話: 下一句話是慌話。
上一句話是真話。 更有趣的是下面的對話。
甲對乙說:“你下面要講的是‘不’,對不對?請用‘是’或‘不’來回答!” 還有一個例子。有個虔誠的教徒,他在演說中口口聲聲說上帝是無所不能的,什么事都做得到。
一位過路人問了一句話:“上帝能創(chuàng)造一塊他自己也舉不起來的石頭嗎?” 2.阿拉伯?dāng)?shù)字 在生活中,我們經(jīng)常會用到0、1、2、3、4、5、6、7、8、9這些數(shù)字。那么你知道這些數(shù)字是誰發(fā)明的嗎? 這些數(shù)字符號原來是古代印度人發(fā)明的,后來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發(fā)明的,就把它們叫做“阿拉伯?dāng)?shù)字”,因為流傳了許多年,人們叫得順口,所以至今人們?nèi)匀粚㈠e就錯,把這些古代印度人發(fā)明的數(shù)字符號叫做阿拉伯?dāng)?shù)字。
現(xiàn)在,阿拉伯?dāng)?shù)字已成了全世界通用的數(shù)字符號。
2.數(shù)學(xué)小知識
1.、王菊珍的百分?jǐn)?shù) 我國科學(xué)家王菊珍對待實驗失敗有句格言,叫做“干下去還有50%成功的希望,不干便是100%的失敗?!?/p>
2、托爾斯泰的分?jǐn)?shù) 俄國大文豪托爾斯泰在談到人的評價時,把人比作一個分?jǐn)?shù)。他說:“一個人就好像一個分?jǐn)?shù),他的實際才能好比分子,而他對自己的估價好比分母。
分母越大,則分?jǐn)?shù)的值就越小?!?1、數(shù)學(xué)的本質(zhì)在於它的自由. 康扥爾(Cantor) 2、在數(shù)學(xué)的領(lǐng)域中, 提出問題的藝術(shù)比解答問題的藝術(shù)更為重要. 康扥爾(Cantor) 3、沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產(chǎn)生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明. 希爾伯特(Hilbert) 4、數(shù)學(xué)是無窮的科學(xué). 赫爾曼外爾 5、問題是數(shù)學(xué)的心臟. P.R.Halmos 6、只要一門科學(xué)分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預(yù)示著獨立發(fā)展的終止或衰 亡. Hilbert 7、數(shù)學(xué)中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深. 高斯 3、雷巴柯夫的常數(shù)與變數(shù) 俄國歷史學(xué)家雷巴柯夫在利用時間方面是這樣說的:“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。
用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍?!?二、用符號寫格言 4、華羅庚的減號 我國著名數(shù)學(xué)家華羅庚在談到學(xué)習(xí)與探索時指出:“在學(xué)習(xí)中要敢于做減法,就是減去前人已經(jīng)解決的部分,看看還有那些問題沒有解決,需要我們?nèi)ヌ剿鹘鉀Q。”
5、愛迪生的加號 大發(fā)明家愛迪生在談天才時用一個加號來描述,他說:“天才=1%的靈感+99%的血汗?!?6、季米特洛夫的正負(fù)號 著名的國際工人運動活動家季米特洛夫在評價一天的工作時說:“要利用時間,思考一下一天之中做了些什么,是‘正號’還是‘負(fù)號’,倘若是‘+’,則進(jìn)步;倘若是‘-’,就得吸取教訓(xùn),采取措施?!?/p>
三、用公式寫的格言 7、愛因斯坦的公式 近代最偉大的科學(xué)家愛因斯坦在談成功的秘訣時,寫下一個公式:A=x+y+z。并解釋道:A代表成功,x代表艱苦的勞動,y代表正確的方法,Z代表少說空話。”
3.小學(xué)數(shù)學(xué)5個小知識
常用的數(shù)量關(guān)系式1、每份數(shù)*份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù) 2、1倍數(shù)*倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù) 3、速度*時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價*數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價 5、工作效率*工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù)7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù) 8、因數(shù)*因數(shù)=積 積÷一個因數(shù)=另一個因數(shù) 9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商*除數(shù)=被除數(shù) 小學(xué)數(shù)學(xué)圖形計算公式 1、正方形 (C:周長 S:面積 a:邊長 )周長=邊長*4 C=4a 面積=邊長*邊長 S=a*a 2、正方體 (V:體積 a:棱長 )表面積=棱長*棱長*6 S表=a*a*6 體積=棱長*棱長*棱長 V=a*a*a 3、長方形( C:周長 S:面積 a:邊長 )周長=(長+寬)*2 C=2(a+b) 面積=長*寬 S=ab 4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)(1)表面積(長*寬+長*高+寬*高)*2 S=2(ab+ah+bh) (2)體積=長*寬*高 V=abh 5、三角形 (s:面積 a:底 h:高) 面積=底*高÷2 s=ah÷2 三角形高=面積 *2÷底 三角形底=面積 *2÷高 6、平行四邊形 (s:面積 a:底 h:高) 面積=底*高 s=ah 7、梯形 (s:面積 a:上底 b:下底 h:高) 面積=(上底+下底)*高÷2 s=(a+b)* h÷28、圓形 (S:面積 C:周長 л d=直徑 r=半徑) (1)周長=直徑*л=2*л*半徑 C=лd=2лr (2)面積=半徑*半徑*л9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長) (1)側(cè)面積=底面周長*高=ch(2лr或лd) (2)表面積=側(cè)面積+底面積*2 (3)體積=底面積*高 (4)體積=側(cè)面積÷2*半徑10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑) 體積=底面積*高÷3 11、總數(shù)÷總份數(shù)=平均數(shù) 12、和差問題的公式:(和+差)÷2=大數(shù) (和-差)÷2=小數(shù) 13、和倍問題: 和÷(倍數(shù)-1)=小數(shù) 小數(shù)*倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù))14、差倍問題: 差÷(倍數(shù)-1)=小數(shù) 小數(shù)*倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù)) 15、相遇問題 相遇路程=速度和*相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間 16、濃度問題 溶質(zhì)的重量+溶劑的重量=溶液的重量 溶質(zhì)的重量÷溶液的重量*100%=濃度 溶液的重量*濃度=溶質(zhì)的重量 溶質(zhì)的重量÷濃度=溶液的重量17、利潤與折扣問題 利潤=售出價-成本; 利潤率=利潤÷成本*100%=(售出價÷成本-1)*100% 漲跌金額=本金*漲跌百分比; 利息=本金*利率*時間; 稅后利息=本金*利率*時間*(1-20%) 常用單位換算 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算:1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算: 1元=10角 1角=10分 1元=100分 時間單位換算:1世紀(jì)=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念第一章 數(shù)和數(shù)的運算 一 概念 (一)整數(shù) 1 整數(shù)的意義: 自然數(shù)和0都是整數(shù)。
2 自然數(shù):我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。 一個物體也沒有,用0表示。
0也是自然數(shù)。 3計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。
每相鄰兩個計數(shù)單位之間的進(jìn)率都是10。這樣的計數(shù)法叫做十進(jìn)制計數(shù)法。
4 數(shù)位: 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 5數(shù)的整除 整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。
如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。
例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。
3的倍數(shù)有:3、6、9、12……其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。 個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。
一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數(shù)的末三位數(shù)能被8(或125)整除,。
4.有關(guān)數(shù)學(xué)的小知識
對于那些成績較差的小學(xué)生來說,學(xué)習(xí)小學(xué)數(shù)學(xué)都有很大的難度,其實小學(xué)數(shù)學(xué)屬于基礎(chǔ)類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學(xué),是一個需要養(yǎng)成良好習(xí)慣的時期,注重培養(yǎng)孩子的習(xí)慣和學(xué)習(xí)能力是重要的一方面,那小學(xué)數(shù)學(xué)有哪些技巧?一、重視課內(nèi)聽講,課后及時進(jìn)行復(fù)習(xí).新知識的接受和數(shù)學(xué)能力的培養(yǎng)主要是在課堂上進(jìn)行的,所以我們必須特別注意課堂學(xué)習(xí)的效率,尋找正確的學(xué)習(xí)方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預(yù)測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學(xué)習(xí)技能,并及時審查它們以避免疑慮.首先,在進(jìn)行各種練習(xí)之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認(rèn)真分析問題,嘗試自己解決問題.二、多做習(xí)題,養(yǎng)成解決問題的好習(xí)慣.如果你想學(xué)好數(shù)學(xué),你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標(biāo)準(zhǔn),反復(fù)練習(xí)基本知識,然后找一些課外活動,幫助開拓思路練習(xí),提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準(zhǔn)備一個用于收集的錯題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習(xí)慣.學(xué)會讓自己高度集中精力,使大腦興奮,快速思考,進(jìn)入最佳狀態(tài)并在考試中自由使用.三、調(diào)整心態(tài)并正確對待考試.首先,主要的重點應(yīng)放在基礎(chǔ)、基本技能、基本方法,因為大多數(shù)測試出于基本問題,較難的題目也是出自于基本.所以只有調(diào)整學(xué)習(xí)的心態(tài),盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習(xí)題進(jìn)行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎(chǔ)題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正?;蛘叱0l(fā)揮.由此可見小學(xué)數(shù)學(xué)的技巧就是多做練習(xí)題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調(diào)整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進(jìn)入到數(shù)學(xué)的海洋中去。
5.關(guān)于數(shù)學(xué)的小知識
奇與偶,有界與無界,善與惡,左與右,一與眾,.雄與雌,直與曲,正方與長方,亮與暗,動與靜。
上面所寫的這些對立概念被兩千多年前的著名的“畢達(dá)哥拉絲學(xué)派"認(rèn)為是整個宇宙的10個對立概念。 因此兩千多年以前人們就認(rèn)識到,世界是由許多相互矛盾的事物組成的。
你要認(rèn)識這個世界,改造這個世界,就要從這些矛盾的事物入手。既然這是萬物的普遍規(guī)律,那么數(shù)學(xué)也要遵守。
下面我們就專門談?wù)勥@個問題。 負(fù)數(shù)的發(fā)現(xiàn) 人們在生活中經(jīng)常會遇到各種相反意義的量。
比如,在記帳時有余有虧;在計算糧倉存米時,有時要記進(jìn)糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數(shù)來表示。
于是人們引入了正負(fù)數(shù)這個概念,把余錢進(jìn)糧食記為正,把虧錢、出糧食記為負(fù)。可見正負(fù)數(shù)是生產(chǎn)實踐中產(chǎn)生的。
據(jù)史料記載,早在兩千多年前,我國就有了正負(fù)數(shù)的概念,掌握了正負(fù)數(shù)的運算法則。人們計算的時候用一些小竹棍擺出各種數(shù)字來進(jìn)行計算。
這些小竹棍叫做“算籌"算籌也可以用骨頭和象牙來制作。 我國三國時期的學(xué)者劉徽在建立負(fù)數(shù)的概念上有重大貢獻(xiàn)。
劉徽首先給出了正負(fù)數(shù)的定義,他說:“今兩算得失相反,要令正負(fù)以名之。"意思是說,在計算過程中遇到具有相反意義的量,要用正數(shù)和負(fù)數(shù)來區(qū)分它們。
劉徽第一次給出了正負(fù)區(qū)分正負(fù)數(shù)的方法。他說:“正算赤,負(fù)算黑;否則以邪正為異"意思是說,用紅色的小棍擺出的數(shù)表示正數(shù),用黑色的小棍擺出的數(shù)表示負(fù)數(shù);也可以用斜擺的小棍表示負(fù)數(shù),用正擺的小棍表示正數(shù)。
我國古代著名的數(shù)學(xué)專著《九章算術(shù)》(成書于公元一世紀(jì))中,最早提出了正負(fù)數(shù)加減法的法則:“正負(fù)數(shù)曰:同名相除,異名相益,正無入負(fù)之,負(fù)無入正之;其異名相除,同名相益,正無入正之,負(fù)無入負(fù)之。"這里的“名"就是“號",“除"就是“減",“相益"、“相除"就是兩數(shù)的絕對值“相加"、“相減",“無"就是“零"。
用現(xiàn)在的話說就是:“正負(fù)數(shù)的加減法則是:同符號兩數(shù)相減,等于其絕對值相減,異號兩數(shù)相減,等于其絕對值相加。零減正數(shù)得負(fù)數(shù),零減負(fù)數(shù)得正數(shù)。
異號兩數(shù)相加,等于其絕對值相減,同號兩數(shù)相加,等于其絕對值相加。零加正數(shù)等于正數(shù),零加負(fù)數(shù)等于負(fù)數(shù)。
" 這段關(guān)于正負(fù)數(shù)的運算法則的敘述是完全正確的,與現(xiàn)在的法則完全一致!負(fù)數(shù)的引入是我國數(shù)學(xué)家杰出的貢獻(xiàn)之一。 用不同顏色的數(shù)表示正負(fù)數(shù)的習(xí)慣,一直保留到現(xiàn)在。
現(xiàn)在一般用紅色表示負(fù)數(shù),報紙上登載某國經(jīng)濟(jì)上出現(xiàn)赤字,表明支出大于收入,財政上虧了錢。 負(fù)數(shù)是正數(shù)的相反數(shù)。
在實際生活中,我們經(jīng)常用正數(shù)和負(fù)數(shù)來表示意義相反的兩個量。夏天武漢氣溫高達(dá)42°C,你會想到武漢的確象火爐,冬天哈爾濱氣溫-32°C一個負(fù)號讓你感到北方冬天的寒冷。
在現(xiàn)今的中小學(xué)教材中,負(fù)數(shù)的引入,是通過算術(shù)運算的方法引入的:只需以一個較小的數(shù)減去一個較大的數(shù),便可以得到一個負(fù)數(shù)。這種引入方法可以在某種特殊的問題情景中給出負(fù)數(shù)的直觀理解。
而在古代數(shù)學(xué)中,負(fù)數(shù)常常是在代數(shù)方程的求解過程中產(chǎn)生的。對古代巴比倫的代數(shù)研究發(fā)現(xiàn),巴比倫人在解方程中沒有提出負(fù)數(shù)根的概念,即不用或未能發(fā)現(xiàn)負(fù)數(shù)根的概念。
3世紀(jì)的希臘學(xué)者丟番圖的著作中,也只給出了方程的正根。然而,在中國的傳統(tǒng)數(shù)學(xué)中,已較早形成負(fù)數(shù)和相關(guān)的運算法則。
除《九章算術(shù)》定義有關(guān)正負(fù)運算方法外,東漢末年劉烘(公元206年)、宋代揚輝(1261年)也論及了正負(fù)數(shù)加減法則,都與九章算術(shù)所說的完全一致。特別值得一提的是,元代朱世杰除了明確給出了正負(fù)數(shù)同號異號的加減法則外,還給出了關(guān)于正負(fù)數(shù)的乘除法則。
負(fù)數(shù)在國外得到認(rèn)識和被承認(rèn),較之中國要晚得多。在印度,數(shù)學(xué)家婆羅摩笈多于公元628年才認(rèn)識負(fù)數(shù)可以是二次方程的根。
而在歐洲14世紀(jì)最有成就的法國數(shù)學(xué)家丘凱把負(fù)數(shù)說成是荒謬的數(shù)。直到十七世紀(jì)荷蘭人日拉爾(1629年)才首先認(rèn)識和使用負(fù)數(shù)解決幾何問題。
與中國古代數(shù)學(xué)家不同,西方數(shù)學(xué)家更多的是研究負(fù)數(shù)存在的合理性。16、17世紀(jì)歐洲大多數(shù)數(shù)學(xué)家不承認(rèn)負(fù)數(shù)是數(shù)。
帕斯卡認(rèn)為從0減去4是純粹的胡說。帕斯卡的朋友阿潤德提出一個有趣的說法來反對負(fù)數(shù),他說(-1):1=1:(-1),那么較小的數(shù)與較大的數(shù)的比怎么能等于較大的數(shù)與較小的數(shù)比呢?直到1712年,連萊布尼茲也承認(rèn)這種說法合理。
英國數(shù)學(xué)家瓦里承認(rèn)負(fù)數(shù),同時認(rèn)為負(fù)數(shù)小于零而大于無窮大(1655年)。他對此解釋到:因為a>0時,英國著名代數(shù)學(xué)家德·摩根 在1831年仍認(rèn)為負(fù)數(shù)是虛構(gòu)的。
他用以下的例子說明這一點:“父親56歲,其子29歲。問何時父親年齡將是兒子的二倍?"他列方程56+x=2(29+x),并解得x=-2。
他稱此解是荒唐的。當(dāng)然,歐洲18世紀(jì)排斥負(fù)數(shù)的人已經(jīng)不多了。
隨著19世紀(jì)整數(shù)理論基礎(chǔ)的建立,負(fù)數(shù)在邏輯上的合理性才真正建立。
6.數(shù)學(xué)小知識50字以上,200字以下
1、數(shù)學(xué)是無窮的科學(xué). ——外爾(Weil)2、問題是數(shù)學(xué)的心臟.—— 哈爾默斯(P.R.Halmos )3、只要一門科學(xué)分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預(yù)示著獨立發(fā)展的終止或衰亡.—— 希爾伯特(Hilbert )4、數(shù)學(xué)中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.——高斯 (Gauss)5、數(shù)學(xué)是科學(xué)6、數(shù)學(xué)比喻: 古希臘哲學(xué)家芝諾號稱"悖論之父",他有四個數(shù)學(xué)悖論一直傳到今天。
他曾講過一句名言:"大圓圈比小圓圈掌握的知識要多一點,但因為大圓圈的圓周比小圓圈的長,所以它與外界空白的接觸面也就比小圓圈大,因此更感到知識的不足,需要努力去學(xué)習(xí)"。7、把數(shù)學(xué)當(dāng)成一門語言學(xué)習(xí),學(xué)會每一個術(shù)語的用法,熟悉每一個符號的意義8、不要放過任何一道看上去很簡單的例題——他們往往并不那么簡單,或者可以引申出很多知識點。
9、會用數(shù)學(xué)公式,并不說明你會數(shù)學(xué)。10、如果不是天才的話,想學(xué)數(shù)學(xué)就不要想玩游戲——你以為你做到了,其實你的數(shù)學(xué)水平并沒有和你通關(guān)的能力一起變高——其實可以時刻記?。簩W(xué)數(shù)學(xué)是你玩“生活”這個大游戲玩的更好!的皇后,而數(shù)論是數(shù)學(xué)的皇后 ——高斯(Gauss)。
7.數(shù)學(xué)趣味小知識 簡短的 20到50字左右
趣味數(shù)學(xué)小知識數(shù)論部分:1、沒有最大的質(zhì)數(shù)。
歐幾里得給出了優(yōu)美而簡單的證明。2、哥德巴赫來猜想:任何一個偶數(shù)都能表示成兩個質(zhì)數(shù)之和。
陳景潤的成果為:任何一個偶數(shù)都能表示成一自個質(zhì)數(shù)和不多于兩個質(zhì)數(shù)的乘積之和。bai3、費馬大定理:x的n次方+y的n次方=z的n次方,n>2時沒有整數(shù)解。
歐拉證明了3和4,1995年被英國數(shù)學(xué)家 安德魯*懷爾斯 證明。拓?fù)鋵W(xué)部分:1、多面體點面棱的關(guān)系:定點數(shù)+面數(shù)=棱數(shù)+2,笛卡爾提出,歐拉證明,也稱du歐拉定理。
zhi2、歐拉定理推論:可能只有5種正多面體,正四面體,正八面體,正六面體,正二十面體,正十二面dao體。3、把空間翻過來,左手系的物體就能變成右手系的,通過克萊因瓶模擬,一節(jié)很好的頭腦體操,摘自:/bbs2/ThreadDetail.aspx?id=31900。
8.數(shù)學(xué)四年級小知識
小學(xué)四年級數(shù)學(xué)知識點歸納四年級上冊知識點概括總結(jié)1.大數(shù)的認(rèn)識:(1)億以內(nèi)的數(shù)的認(rèn)識:十萬:10個一萬;一百萬:10個十萬;一千萬:10個一百萬;一億:10個一千萬;2.數(shù)級:數(shù)級是為便于人們記讀阿拉伯?dāng)?shù)的一種識讀方法,在位值制(數(shù)位順序)的基礎(chǔ)上,以三位或四位分級的原則,把數(shù)讀,寫出來。
通常在阿拉伯?dāng)?shù)的書寫上,以小數(shù)點或者空格作為各個數(shù)級的標(biāo)識,從右向左把數(shù)分開。3.數(shù)級分類(1)四位分級法即以四位數(shù)為一個數(shù)級的分級方法。
我國讀數(shù)的習(xí)慣,就是按這種方法讀的。 如:萬(數(shù)字后面4個0)、億(數(shù)字后面8個0)、兆(數(shù)字后面12個0,這是中法計數(shù))……。
這些級分別叫做個級,萬級,億級……。 (2)三位分級法 即以三位數(shù)為一個數(shù)級的分級方法。
這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數(shù)字后面3個0、百萬,數(shù)字后面6個0、十億,數(shù)字后面9個0……。
4.數(shù)位:數(shù)位是指寫數(shù)時,把數(shù)字并列排成橫列,一個數(shù)字占有一個位置,這些位置,都叫做數(shù)位。從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。
這就說明計數(shù)單位和數(shù)位的概念是不同的。5.數(shù)的產(chǎn)生:阿拉伯?dāng)?shù)字的由來:古代印度人創(chuàng)造了阿拉伯?dāng)?shù)字后,大約到了公元7世紀(jì)的時候,這些數(shù)字傳到了阿拉伯地區(qū)。
到13世紀(jì)時,意大利數(shù)學(xué)家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯?dāng)?shù)字做了詳細(xì)的介紹。后來,這些數(shù)字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數(shù)字是從阿拉伯地區(qū)傳入的,所以便把這些數(shù)字叫做阿拉伯?dāng)?shù)字。
以后,這些數(shù)字又從歐洲傳到世界各國。阿拉伯?dāng)?shù)字傳入我國,大約是13到14世紀(jì)。
由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯?dāng)?shù)字當(dāng)時在我國沒有得到及時的推廣運用。本世紀(jì)初,隨著我國對外國數(shù)學(xué)成就的吸收和引進(jìn),阿拉伯?dāng)?shù)字在我國才開始慢慢使用,阿拉伯?dāng)?shù)字在我國推廣使用才有100多年的歷史。
阿拉伯?dāng)?shù)字現(xiàn)在已成為人們學(xué)習(xí)、生活和交往中最常用的數(shù)字了。6.自然數(shù):用以計量事物的件數(shù)或表示事物次序的數(shù) 。
即用數(shù)碼0,1,2,3,4,……所表示的數(shù) 。表示物體個數(shù)的數(shù)叫自然數(shù),自然數(shù)由0開始(包括0), 一個接一個,組成一個無窮的集體。
7.計算工具:算盤、計算器、計算機。8.射線:在幾何學(xué)中,直線上的一點和它一旁的部分所組成的圖形稱為射線。
如下圖所示:8.射線特點(1)射線只有一個端點,它從一個端點向另一邊無限延長。 (2)射線不可測量。
9.直線:直線是點在空間內(nèi)沿相同或相反方向運動的軌跡。10.線段:線段用表示它兩個端點的字母或一個小寫字母表示,有時這些字母也表示線段長度,記作線段AB或線段BA,線段a。
其中AB表示直線上的任意兩點。11.線段特點(1)有限長度,可以測量 (2)兩個端點12.線段性質(zhì): (1)兩點之間線段最短。
(2)連接兩點間線段的長度叫做這兩點間的距離。 (3)直線上兩個點和它們之間的部分叫做線段,這兩個點叫做線段的端點。
直線沒有距離。射線也沒有距離。
因為,直線沒有端點,射線只有一個端點,可以無限延長。13.角(1)角的靜態(tài)定義具有公共端點的兩條不重合的射線組成的圖形叫做角。
這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。 (2)角的動態(tài)定義一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。
所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊 14.角的符號:角的符號:∠15.角的種類:角的大小與邊的長短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。
角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。
此外,還有密位制、弧度制等。 (1)銳角:大于0°,小于90°的角叫做銳角。
(2)直角:等于90°的角叫做直角。 (3)鈍角:大于90°而小于180°的角叫做鈍角。
16.乘法:乘法是指一個數(shù)或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。
17.乘法算式中各數(shù)的名稱:“*”是乘號,乘號前面和后面的數(shù)叫做因數(shù),“=”是等于號,等于號后面的數(shù)叫做積。 10(因數(shù)) *(乘號) 200(因數(shù)) =(等于號) 2000(積)18.平行:在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。
如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。
19.垂直:兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。20.平行四邊形:在同一平面內(nèi)有兩組對邊分別平行的四邊形叫做平行四邊形。
21.梯形:梯形是指一組對邊平行而另一組對邊不平行的四邊形。平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認(rèn)為上面的一條叫上底,下面一條叫下底。
不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。22.除法:除。
9.數(shù)學(xué)小知識有啥
看看[楊輝三角]吧!
楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
… … … … …
楊輝三角最本質(zhì)的特征是,它的兩條斜邊都是由數(shù)字1組成的,而其余的數(shù)則是等于它肩上的兩個數(shù)之和。其實,中國古代數(shù)學(xué)家在數(shù)學(xué)的許多重要領(lǐng)域中處于遙遙領(lǐng)先的地位。中國古代數(shù)學(xué)史曾經(jīng)有自己光輝燦爛的篇章,而楊輝三角的發(fā)現(xiàn)就是十分精彩的一頁。楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章算法》一書中,輯錄了如上所示的三角形數(shù)表,稱之為“開方作法本源”圖。而這樣一個三角在我們的奧數(shù)競賽中也是經(jīng)常用到,最簡單的就是叫你找規(guī)律?,F(xiàn)在要求我們用編程的方法輸出這樣的數(shù)表。
奇*奇=奇
奇+偶=奇
奇+奇=偶
奇*偶=偶
偶+偶=偶
偶*偶=偶
無聲勝有聲
在數(shù)學(xué)上也不乏無聲勝有聲這種意境。1903年,在紐約的一次數(shù)學(xué)報告會上,數(shù)學(xué)家科樂上了講臺,他沒有說一句話,只是用粉筆在黑板上寫了兩數(shù)的演算結(jié)果,一個是2的67次方-1,另一個是193707721*761838257287,兩個算式的結(jié)果完全相同,這時,全場爆發(fā)出經(jīng)久不息的掌聲。這是為什么呢?
因為科樂解決了兩百年來一直沒弄清的問題,即2是67次方-1是不是質(zhì)數(shù)?現(xiàn)在既然它等于兩個數(shù)的乘積,可以分解成兩個因數(shù),因此證明了2是67次方-1不是質(zhì)數(shù),而是合數(shù)。
科爾只做了一個簡短的無聲的報告,可這是他花了3年中全部星期天的時間,才得出的結(jié)論。在這簡單算式中所蘊含的勇氣,毅力和努力,比洋洋灑灑的萬言報告更具魅力。
10.求一些數(shù)學(xué)小知識
數(shù)學(xué)符號的起源 數(shù)學(xué)除了記數(shù)以外,還需要一套數(shù)學(xué)符號來表示數(shù)和數(shù)、數(shù)和形的相互關(guān)系。
數(shù)學(xué)符號的發(fā)明和使用比數(shù)字晚,但是數(shù)量多得多?,F(xiàn)在常用的有200多個,初中數(shù)學(xué)書里就不下20多種。
它們都有一段有趣的經(jīng)歷。 例如加號曾經(jīng)有好幾種,現(xiàn)在通用"+"號。
"+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀(jì),意大利科學(xué)家塔塔里亞用意大利文"più"(加的意思)的第一個字母表示加,草為"μ"最后都變成了"+"號。
"-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。 到了十五世紀(jì),德國數(shù)學(xué)家魏德美正式確定:"+"用作加號,"-"用作減號。
乘號曾經(jīng)用過十幾種,現(xiàn)在通用兩種。一個是"*",最早是英國數(shù)學(xué)家奧屈特1631年提出的;一個是"· ",最早是英國數(shù)學(xué)家赫銳奧特首創(chuàng)的。
德國數(shù)學(xué)家萊布尼茨認(rèn)為:"*"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。
可是這個符號現(xiàn)在應(yīng)用到集合論中去了。 到了十八世紀(jì),美國數(shù)學(xué)家歐德萊確定,把"*"作為乘號。
他認(rèn)為"*"是"+"斜起來寫,是另一種表示增加的符號。 "÷"最初作為減號,在歐洲大陸長期流行。
直到1631年英國數(shù)學(xué)家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。后來瑞士數(shù)學(xué)家拉哈在他所著的《代數(shù)學(xué)》里,才根據(jù)群眾創(chuàng)造,正式將"÷"作為除號。
十六世紀(jì)法國數(shù)學(xué)家維葉特用"="表示兩個量的差別。可是英國牛津大學(xué)數(shù)學(xué)、修辭學(xué)教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數(shù)相等是最合適不過的了,于是等于符號"="就從1540年開始使用起來。
1591年,法國數(shù)學(xué)家韋達(dá)在菱中大量使用這個符號,才逐漸為人們接受。十七世紀(jì)德國萊布尼茨廣泛使用了"="號,他還在幾何學(xué)中用"∽"表示相似,用"≌"表示全等。
大于號"〉"和小于號"〈",是1631年英國著名代數(shù)學(xué)家赫銳奧特創(chuàng)用。至于≯""≮"、"≠"這三個符號的出現(xiàn),是很晚很晚的事了。
大括號"{ }"和中括號"[ ]"是代數(shù)創(chuàng)始人之一魏治德創(chuàng)造的。 數(shù)學(xué)的起源和早期發(fā)展: 數(shù)學(xué)與其他科學(xué)分支一樣,是在一定的社會條件下,通過人類的社會實踐和生產(chǎn)活動發(fā)展起來的一種智力積累.其主要內(nèi)容反映了現(xiàn)實世界的數(shù)量關(guān)系和空間形式,以及它們之間的關(guān)系和結(jié)構(gòu).這可以從數(shù)學(xué)的起源得到印證. 古代非洲的尼羅河、西亞的底格里斯河和幼發(fā)拉底河、中南亞的印度河和恒河以及東亞的黃河和長江,是數(shù)學(xué)的發(fā)源地.這些地區(qū)的先民由于從事農(nóng)業(yè)生產(chǎn)的需要,從控制洪水和灌溉,測量田地的面積、計算倉庫的容積、推算適合農(nóng)業(yè)生產(chǎn)的歷法以及相關(guān)的財富計算、產(chǎn)品交換等等長期實踐活動中積累了豐富的經(jīng)驗,并逐漸形成了相應(yīng)的技術(shù)知識和有關(guān)的數(shù)學(xué)知識.。