1.數(shù)學小知識,要六年級的
1、楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 楊輝三角最本質的特征是,它的兩條斜邊都是由數(shù)字1組成的,而其余的數(shù)則是等于它肩上的兩個數(shù)之和。
其實,中國古代數(shù)學家在數(shù)學的許多重要領域中處于遙遙領先的地位。中國古代數(shù)學史曾經(jīng)有自己光輝燦爛的篇章,而楊輝三角的發(fā)現(xiàn)就是十分精彩的一頁。
楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章算法》一書中,輯錄了如上所示的三角形數(shù)表,稱之為“開方作法本源”圖。
而這樣一個三角在我們的奧數(shù)競賽中也是經(jīng)常用到,最簡單的就是叫你找規(guī)律?,F(xiàn)在要求我們用編程的方法輸出這樣的數(shù)表。
2、一個故事引發(fā)的數(shù)學家 陳景潤一個家喻戶曉的數(shù)學家,在攻克歌德巴赫猜想方面作出了重大貢獻,創(chuàng)立了著名的“陳氏定理”,所以有許多人親切地稱他為“數(shù)學王子”。但有誰會想到,他的成就源于一個故事。
1937年,勤奮的陳景潤考上了福州英華書院,此時正值抗日戰(zhàn)爭時期,清華大學航空工程系主任留英博士沈元教授回福建奔喪,不想因戰(zhàn)事被滯留家鄉(xiāng)。幾所大學得知消息,都想邀請沈教授前進去講學,他謝絕了邀請。
由于他是英華的校友,為了報達母校,他來到了這所中學為同學們講授數(shù)學課。 一天,沈元老師在數(shù)學課上給大家講了一故事:“200年前有個法國人發(fā)現(xiàn)了一個有趣的現(xiàn)象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每個大于4的偶數(shù)都可以表示為兩個奇數(shù)之和。因為這個結論沒有得到證明,所以還是一個猜想。
大數(shù)學歐拉說過:雖然我不能證明它,但是我確信這個結論是正確的。 它像一個美麗的光環(huán),在我們不遠的前方閃耀著眩目的光輝。
……”陳景潤瞪著眼睛,聽得入神。 從此,陳景潤對這個奇妙問題產(chǎn)生了濃厚的興趣。
課余時間他最愛到圖書館,不僅讀了中學輔導書,這些大學的數(shù)理化課程教材他也如饑似渴地閱讀。因此獲得了“書呆子”的雅號。
興趣是第一老師。正是這樣的數(shù)學故事,引發(fā)了陳景潤的興趣,引發(fā)了他的勤奮,從而引發(fā)了一位偉大的數(shù)學家。
3、為科學而瘋的人 由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為“悖論”),許多大數(shù)學家唯恐陷進去而采取退避三舍的態(tài)度。在1874—1876年期間,不到30歲的年輕德國數(shù)學家康托爾向神秘的無窮宣戰(zhàn)。
他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都“一樣多”,后來幾年,康托爾對這類“無窮集合”問題發(fā)表了一系列文章,通過嚴格證明得出了許多驚人的結論。
康托爾的創(chuàng)造性工作與傳統(tǒng)的數(shù)學觀念發(fā)生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說康托爾是“瘋子”。
來自數(shù)學權威們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神分裂癥,被送進精神病醫(yī)院。 真金不怕火煉,康托爾的思想終于大放光彩。
1897年舉行的第一次國際數(shù)學家會議上,他的成就得到承認,偉大的哲學家、數(shù)學家羅素稱贊康托爾的工作“可能是這個時代所能夸耀的最巨大的工作。”可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。
1918年1月6日,康托爾在一家精神病院去世。 康托爾(1845—1918),生于俄國彼得堡一丹麥猶太血統(tǒng)的富商家庭,10歲隨家遷居德國,自幼對數(shù)學有濃厚興趣。
23歲獲博士學位,以后一直從事數(shù)學教學與研究。他所創(chuàng)立的集合論已被公認為全部數(shù)學的基礎。
4、數(shù)學家的“健忘” 我國數(shù)學家吳文俊教授六十壽辰那天,仍如往常,黎明即起,整天浸沉在運算和公式中。 有人特地選定這一天的晚間登門拜門拜訪,寒暄之后,說明來意:“聽您夫 人說,今天是您六十大壽,特來表示祝賀?!?/p>
吳文俊仿佛聽了一件新聞,恍然大悟地說:“噢,是嗎?我倒忘了?!?來人暗暗吃驚,心想:數(shù)學家的腦子里裝滿了數(shù)字,怎么連自己的生日也記不住? 其實,吳文俊對日期的記憶力是很強的。
他在將近花甲之年的時候,又先攻 了一個難題——“機器證明”。這是為了改變了數(shù)學家“一支筆、一張紙、一個腦袋”的勞動方式,運用電子計算機來實現(xiàn)數(shù)學證明,以便數(shù)學家能騰出更多的時間來進行創(chuàng)造性的工作,他在進行這項課題的研究過程中,對于電子計算機安裝的日期、為計算機最后編成三百多道“指令”程序的日期,都記得一清二楚。
后來,那位祝壽的來客在閑談中問起他怎么連自己生日也記不住的時候,他知著回答: “我從來不記那些沒有意義的數(shù)字。在我看來,生日,早一天,晚一天,有 什么要緊?所以,我的生日,愛人的生日,孩子的生日,我一概不記,他從不想 要為自己或家里的人慶祝生日,就連我結婚的日子,也忘了。
但是,有些數(shù)字非記不可,也很容易記住……” 5、蘋果樹下的例行出步 1884年春天,年輕的數(shù)學家阿道夫·赫維茨從哥廷根來到哥尼斯堡擔任副教授,年齡還不到25。
2.20個字的數(shù)學小知識
人們把12345679叫做“缺8數(shù)”,這“缺8數(shù)”有許多讓人驚訝的特點,比如用9的倍數(shù)與它相乘,乘積竟會是由同一個數(shù)組成,人們把這叫做“清一色”。比如:
12345679*9=111111111
12345679*18=222222222
12345679*27=333333333
……
12345679*81=999999999
這些都是9的1倍至9的9倍的。
還有99、108、117至171。最后,得出的答案是:
12345679*99=1222222221
12345679*108=1333333332
12345679*117=1444444443
… …
12345679*171=2111111109
也是“清一色
3.六年級數(shù)學小故事
有一天哈地乘了一輛出租汽車去看他,這車牌號碼是
1729
哈地對拉瑪
奴江講出了這個數(shù)字,
看來沒有甚麼意義。
可是拉瑪奴江想一下馬上回答:
「這是最小的整數(shù)能用二種方
法
來
表
示
二
個
整
數(shù)
的
立
方
的
和
」
(1729=13+123=93+103)
拉瑪奴江被稱為數(shù)學的預言家,
他死后已經(jīng)有五十四年了,
可是他的一
些預測的結果,
還是目
前數(shù)學家正想法證明的
4.關于六年級數(shù)學的趣味小知識
用數(shù)學寫的人生格言:干下去還有50%成功的希望,不干便是100%的失敗——王菊珍
一個人就好像一個分數(shù),他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數(shù)值就越小?!袪査固?/p>
時間是一個常數(shù),但對勤奮者來說,是一個“變數(shù)”。用“分”來計算時間的人比用“小時”來計算時間的人時間多59倍——雷巴柯夫
在學習中要敢于做減法,就是減去前人已經(jīng)解決的部分,看看還有哪些問題沒有解決,需要我們去探索解決?!A羅庚
天才=1%的靈感+99%的血汗?!獝鄣仙?/p>
A=x+y+z
其中A代表成功,x代表艱苦的勞動,y代表正確的方法,z代表少說空話?!獝垡蛩固?/p>
5.求六年級數(shù)學的一些小知識
祖沖之
(公元429年~500年)
祖沖之(429-500),中國南北朝時代南朝數(shù)學家、天文學家、物理學家。祖沖之的祖父名叫祖昌,在宋朝做了一個管理朝廷建筑的長官。祖沖之長在這樣的家庭里,從小就讀了不少書,人家都稱贊他是個博學的青年。他特別愛好研究數(shù)學,也喜歡研究天文歷法,經(jīng)常觀測太陽和星球運行的情況,并且做了詳細記錄。
祖沖之孜孜不倦地研究科學。他更大的成就是在數(shù)學方面。他曾經(jīng)對古代數(shù)學著作《九章算術》作了注釋,又編寫一本《綴術》。他的最杰出貢獻是求得相當精確的圓周率。經(jīng)過長期的艱苦研究,他計算出圓周率在3.1415926和3.1415927之間,成為世界上最早把圓周率數(shù)值推算到七位數(shù)字以上的科學家。
祖沖之在科學發(fā)明上是個多面手,他造過一種指南車,隨便車子怎樣轉彎,車上的銅人總是指著南方;他又造過“千里船”,在新亭江(在今南京市西南)上試航過,一天可以航行一百多里。他還利用水力轉動石磨,舂米碾谷子,叫做“水碓磨”。
6.數(shù)學小知識少一點的六年級上冊 的
1.單價*數(shù)量=總價 2.單產(chǎn)量*數(shù)量=總產(chǎn)量 3.速度*時間=路程 4.工效*時間=工作總量 小學數(shù)學定義定理公式(二)
一、算術方面
1.加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。
2.加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或先把后兩個數(shù)相加,再同第 三個數(shù)相加,和不變。
3.乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積不變。
4.乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或先把后兩個數(shù)相乘,再和第三個數(shù)相乘,它們的積不變。
5.乘法分配律:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。如:(2+4)*5=2*5+4*5。
6.除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮?。┫嗤谋稊?shù),商不變。0除以任何不是0的數(shù)都得0。
7.等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。
8.方程式:含有未知數(shù)的等式叫方程式。
9.一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
10.分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。
11.分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。
12.分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。
13.分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。
14.分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。
15.分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。
16.真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。
17.假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。
18.帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。
19.分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。
20.一個數(shù)除以分數(shù),等于這個數(shù)乘以分數(shù)的倒數(shù)。
21.甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)
7.數(shù)學趣味小知識 簡短的 20到50字左右
趣味數(shù)學小知識
數(shù)論部分:
1、沒有最大的質數(shù)。歐幾里得給出了優(yōu)美而簡單的證明。
2、哥德巴赫猜想:任何一個偶數(shù)都能表示成兩個質數(shù)之和。陳景潤的成果為:任何一個偶數(shù)都能表示成一個質數(shù)和不多于兩個質數(shù)的乘積之和。
3、費馬大定理:x的n次方+y的n次方=z的n次方,n>2時沒有整數(shù)解。歐拉證明了3和4,1995年被英國數(shù)學家 安德魯*懷爾斯 證明。
拓撲學部分:
1、多面體點面棱的關系:定點數(shù)+面數(shù)=棱數(shù)+2,笛卡爾提出,歐拉證明,也稱歐拉定理。
2、歐拉定理推論:可能只有5種正多面體,正四面體,正八面體,正六面體,正二十面體,正十二面體。
3、把空間翻過來,左手系的物體就能變成右手系的,通過克萊因瓶模擬,一節(jié)很好的頭腦體操,
摘自:/bbs2/ThreadDetail.aspx?id=31900
8.六年級數(shù)學基礎知識大全
小學數(shù)學基礎知識整理(一到六年級) 小學一年級 九九乘法口訣表。
學會基礎加減乘。小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數(shù)小數(shù)。
小學四年級 線角自然數(shù)整數(shù),素因數(shù)梯形對稱,分數(shù)小數(shù)計算。小學五年級 分數(shù)小數(shù)乘除法,代數(shù)方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。必背定義、定理公式 三角形的面積=底*高÷2。
公式 S= a*h÷2 正方形的面積=邊長*邊長 公式 S= a*a 長方形的面積=長*寬 公式 S= a*b 平行四邊形的面積=底*高 公式 S= a*h 梯形的面積=(上底+下底)*高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。長方體的體積=長*寬*高 公式:V=abh 長方體(或正方體)的體積=底面積*高 公式:V=abh 正方體的體積=棱長*棱長*棱長 公式:V=aaa 圓的周長=直徑*π 公式:L=πd=2πr 圓的面積=半徑*半徑*π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。
公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等于底面積乘高。
公式:V=Sh 圓錐的體積=1/3底面*積高。公式:V=1/3Sh 分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。
異分母的分數(shù)相加減,先通分,然后再加減。分數(shù)的乘法則:用分子的積做分子,用分母的積做分母。
分數(shù)的除法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。讀懂理解會應用以下定義定理性質公式 一、算術方面1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。
2、加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或先把后兩個數(shù)相加,再同第三個數(shù)相加,和不變。3、乘法交換律:兩數(shù)相乘,交換因數(shù)的位置,積不變。
4、乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或先把后兩個數(shù)相乘,再和第三個數(shù)相乘,它們的積不變。5、乘法分配律:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。
如:(2+4)*5=2*5+4*56、除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮?。┫嗤谋稊?shù),商不變。 O除以任何不是O的數(shù)都得O。
簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。7、么叫等式?等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。8、什么叫方程式?答:含有未知數(shù)的等式叫方程式。
9、什么叫一元一次方程式?答:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。
即例出代有χ的算式并計算。10、分數(shù):把單位"1"平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。
11、分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。
12、分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。
13、分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。14、分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。
15、分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。16、真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。
17、假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。
18、帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。19、分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。
20、一個數(shù)除以分數(shù),等于這個數(shù)乘以分數(shù)的倒數(shù)。21、甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。
數(shù)量關系計算公式方面1、單價*數(shù)量=總價2、單產(chǎn)量*數(shù)量=總產(chǎn)量3、速度*時間=路程4、工效*時間=工作總量5、加數(shù)+加數(shù)=和 一個加數(shù)=和+另一個加數(shù) 被減數(shù)-減數(shù)=差 減數(shù)=被減數(shù)-差 被減數(shù)=減數(shù)+差 因數(shù)*因數(shù)=積 一個因數(shù)=積÷另一個因數(shù) 被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商*除數(shù) 有余數(shù)的除法: 被除數(shù)=商*除數(shù)+余數(shù) 一個數(shù)連續(xù)用兩個數(shù)除,可以先把后兩個數(shù)相乘,再用它們的積去除這個數(shù),結果不變。例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1噸=1000千克 1千克= 1000克= 1公斤= 1市斤1公頃=10000平方米。
1畝=666.666平方米。1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:兩個數(shù)相除就叫做兩個數(shù)的比。
如:2÷5或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(shù)(0除外),比值不變。8、什么叫比例:表示兩個比相等的式子叫做比例。
如3:6=9:189、比例的基本性質:在比例里,兩外。
9.數(shù)學小知識
8月6日 周六
今天晚上,我看見一道會迷惑人的數(shù)學題,題目:37個同學要渡河,渡口有一只能乘上5人的空小船,他們要全部渡過河,至少要使用這只小船多少次?
粗心的人往往會忽略“空小船”,就是忘了要有一個撐船,那么每次只能乘4人。這樣37人減去一位撐船的同學,剩36位同學,36除以4等于9,最后一次到對岸當船夫的同學也上岸4,所以至少要走9趟。
數(shù)學日記三
8月9日 周二
傍晚,我在奧林匹克書中看到一道難題:果園里的蘋果樹是梨樹的3倍,老王師傅每天給50棵蘋果樹20棵梨樹施肥,幾天后,梨樹全部施上肥,但蘋果樹還剩下80棵沒施肥。請問:果園里有蘋果樹和梨樹各多少棵?
我沒有被這道題嚇倒,難題能激發(fā)我的興趣。我想,蘋果樹是梨樹的3倍,假如要使兩種樹同一天施完肥,老王師傅就應該每天給“20*3”棵蘋果樹和20棵梨樹施肥。而實際他每天只給50棵蘋果樹施肥,差了10棵,最后共差了80棵,從這里可以得知,老王師傅已經(jīng)施了8天肥。一天20棵梨樹,8天就是160棵梨樹,再根據(jù)第一個條件,可以知道蘋果樹是480棵。這就是用假設的思路來解題,因此我想,假設法實在是一種很好的解題方法。
數(shù)學日記四
8月11日 周四
今天我又遇到一道數(shù)學難題,費了好大的勁才解出來。題目是:兩棵樹上共有30只小鳥,乙樹上先飛走4只,這時甲樹飛向乙樹3只,兩棵樹上的小鳥剛好相等。兩棵樹上原來各有幾只小鳥?
我一看完題目,就知道這是還原問題,于是用還原問題的方法解??沈炈銜r卻發(fā)現(xiàn)錯了。我便更加認真地重新做起來。我想,少了4只后一樣多,那一半是13只,還原乙樹是14只;甲樹就是16只。算式為:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案為:甲樹16只,乙樹14只。
通過解這道題,我明白了,無論做什么題,都要細心,否則,即使掌握了解題方法,結果還會出錯。
6月28日 周二
今天中午,我正在做數(shù)學暑假作業(yè)。寫著寫著,不幸遇到了一道很難的題,我想了半天也沒想出個所以然,這道題是這樣的:
有一個長方體,正面和上面的兩個面積的積為209平方厘米,并且長、寬、高都是質數(shù)。求它的體積。
我見了,心想:這道題還真是難??!已知的只有兩個面面積的積,要求體積還必須知道長、寬、高,而它一點也沒有提示。這可怎么入手??!
正當我急得抓耳撓腮之際,我媽媽的一個同事來了。他先教我用方程的思路去解,可是我對方程這種方法還不是很熟悉。于是,他又教我另一種方法:先列出數(shù),再逐一排除。我們先按題目要求列出了許多數(shù)字,如:3、5、7、11等一類的質數(shù),接著我們開始排除,然后我們發(fā)現(xiàn)只剩下11和19這兩個數(shù)字。這時,我想:這兩個數(shù)中有一個是題中長方體正面,上面公用的棱長;一個則是長方體正面,上面除以上一條外另一條
棱長(且長度都為質數(shù))之和。于是,我開始分辯這兩個數(shù)各是哪個數(shù)。
最后,我得到了結果,為374立方厘米。我的算式是:209=11*19 19=2+17 11*2*17=374(立方厘米)
后來,我又用我本學期學過的知識:分解質因數(shù)驗算了這道題,結果一模一樣。
解出這道題后,我心里比誰都高興。我還明白了一個道理:數(shù)學充滿了奧秘,等待著我們去探求。