绝对不卡福利网站|中文字幕在笑第一页|午夜福利中文字幕首页|久久精彩视频免费观看

  • <abbr id="lczsv"></abbr>
    <blockquote id="lczsv"></blockquote>

    <track id="lczsv"><table id="lczsv"><nobr id="lczsv"></nobr></table></track>
    • 算數(shù)小知識

      2022-04-18 綜合 86閱讀 投稿:已習(xí)慣

      1.關(guān)于數(shù)學(xué)的小知識

      數(shù)學(xué)小知識

      --------------------------------------------------------------------------------

      數(shù)學(xué)符號的起源

      數(shù)學(xué)除了記數(shù)以外,還需要一套數(shù)學(xué)符號來表示數(shù)和數(shù)、數(shù)和形的相互關(guān)系。數(shù)學(xué)符號的發(fā)明和使用比數(shù)字晚,但是數(shù)量多得多?,F(xiàn)在常用的有200多個,初中數(shù)學(xué)書里就不下20多種。它們都有一段有趣的經(jīng)歷。

      例如加號曾經(jīng)有好幾種,現(xiàn)在通用"+"號。

      "+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀(jì),意大利科學(xué)家塔塔里亞用意大利文"più"(加的意思)的第一個字母表示加,草為"μ"最后都變成了"+"號。

      "-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。

      到了十五世紀(jì),德國數(shù)學(xué)家魏德美正式確定:"+"用作加號,"-"用作減號。

      乘號曾經(jīng)用過十幾種,現(xiàn)在通用兩種。一個是"*",最早是英國數(shù)學(xué)家奧屈特1631年提出的;一個是"· ",最早是英國數(shù)學(xué)家赫銳奧特首創(chuàng)的。德國數(shù)學(xué)家萊布尼茨認(rèn)為:"*"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘??墒沁@個符號現(xiàn)在應(yīng)用到集合論中去了。

      到了十八世紀(jì),美國數(shù)學(xué)家歐德萊確定,把"*"作為乘號。他認(rèn)為"*"是"+"斜起來寫,是另一種表示增加的符號。

      "÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數(shù)學(xué)家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。后來瑞士數(shù)學(xué)家拉哈在他所著的《代數(shù)學(xué)》里,才根據(jù)群眾創(chuàng)造,正式將"÷"作為除號。

      十六世紀(jì)法國數(shù)學(xué)家維葉特用"="表示兩個量的差別。可是英國牛津大學(xué)數(shù)學(xué)、修辭學(xué)教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數(shù)相等是最合適不過的了,于是等于符號"="就從1540年開始使用起來。

      1591年,法國數(shù)學(xué)家韋達(dá)在菱中大量使用這個符號,才逐漸為人們接受。十七世紀(jì)德國萊布尼茨廣泛使用了"="號,他還在幾何學(xué)中用"∽"表示相似,用"≌"表示全等。

      大于號"〉"和小于號"〈",是1631年英國著名代數(shù)學(xué)家赫銳奧特創(chuàng)用。至于≯""≮"、"≠"這三個符號的出現(xiàn),是很晚很晚的事了。大括號"{ }"和中括號"[ ]"是代數(shù)創(chuàng)始人之一魏治德創(chuàng)造

      2.數(shù)學(xué)小知識有啥

      看看[楊輝三角]吧!

      楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:

      1

      1 1

      1 2 1

      1 3 3 1

      1 4 6 4 1

      1 5 10 10 5 1

      1 6 15 20 15 6 1

      1 7 21 35 35 21 7 1

      … … … … …

      楊輝三角最本質(zhì)的特征是,它的兩條斜邊都是由數(shù)字1組成的,而其余的數(shù)則是等于它肩上的兩個數(shù)之和。其實,中國古代數(shù)學(xué)家在數(shù)學(xué)的許多重要領(lǐng)域中處于遙遙領(lǐng)先的地位。中國古代數(shù)學(xué)史曾經(jīng)有自己光輝燦爛的篇章,而楊輝三角的發(fā)現(xiàn)就是十分精彩的一頁。楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章算法》一書中,輯錄了如上所示的三角形數(shù)表,稱之為“開方作法本源”圖。而這樣一個三角在我們的奧數(shù)競賽中也是經(jīng)常用到,最簡單的就是叫你找規(guī)律?,F(xiàn)在要求我們用編程的方法輸出這樣的數(shù)表。

      奇*奇=奇

      奇+偶=奇

      奇+奇=偶

      奇*偶=偶

      偶+偶=偶

      偶*偶=偶

      無聲勝有聲

      在數(shù)學(xué)上也不乏無聲勝有聲這種意境。1903年,在紐約的一次數(shù)學(xué)報告會上,數(shù)學(xué)家科樂上了講臺,他沒有說一句話,只是用粉筆在黑板上寫了兩數(shù)的演算結(jié)果,一個是2的67次方-1,另一個是193707721*761838257287,兩個算式的結(jié)果完全相同,這時,全場爆發(fā)出經(jīng)久不息的掌聲。這是為什么呢?

      因為科樂解決了兩百年來一直沒弄清的問題,即2是67次方-1是不是質(zhì)數(shù)?現(xiàn)在既然它等于兩個數(shù)的乘積,可以分解成兩個因數(shù),因此證明了2是67次方-1不是質(zhì)數(shù),而是合數(shù)。

      科爾只做了一個簡短的無聲的報告,可這是他花了3年中全部星期天的時間,才得出的結(jié)論。在這簡單算式中所蘊含的勇氣,毅力和努力,比洋洋灑灑的萬言報告更具魅力。

      3.小學(xué)數(shù)學(xué)小常識

      這是一個有趣的數(shù)學(xué)常識,做數(shù)學(xué)報用上它也很不錯。

      人們把12345679叫做“缺8數(shù)”,這“缺8數(shù)”有許多讓人驚訝的特點,比如用9的倍數(shù)與它相乘,乘積竟會是由同一個數(shù)組成,人們把這叫做“清一色”。比如:

      12345679*9=111111111

      12345679*18=222222222

      12345679*27=333333333

      ……

      12345679*81=999999999

      這些都是9的1倍至9的9倍的。

      還有99、108、117至171。最后,得出的答案是:

      12345679*99=1222222221

      12345679*108=1333333332

      12345679*117=1444444443

      … …

      12345679*171=2111111109

      也是“清一色

      4.20個字的數(shù)學(xué)小知識

      人們把12345679叫做“缺8數(shù)”,這“缺8數(shù)”有許多讓人驚訝的特點,比如用9的倍數(shù)與它相乘,乘積竟會是由同一個數(shù)組成,人們把這叫做“清一色”。比如:

      12345679*9=111111111

      12345679*18=222222222

      12345679*27=333333333

      ……

      12345679*81=999999999

      這些都是9的1倍至9的9倍的。

      還有99、108、117至171。最后,得出的答案是:

      12345679*99=1222222221

      12345679*108=1333333332

      12345679*117=1444444443

      … …

      12345679*171=2111111109

      也是“清一色

      5.小學(xué)數(shù)學(xué)5個小知識

      常用的數(shù)量關(guān)系式1、每份數(shù)*份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù) 2、1倍數(shù)*倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù) 3、速度*時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價*數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價 5、工作效率*工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6、加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù)7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù) 8、因數(shù)*因數(shù)=積 積÷一個因數(shù)=另一個因數(shù) 9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商*除數(shù)=被除數(shù) 小學(xué)數(shù)學(xué)圖形計算公式 1、正方形 (C:周長 S:面積 a:邊長 )周長=邊長*4 C=4a 面積=邊長*邊長 S=a*a 2、正方體 (V:體積 a:棱長 )表面積=棱長*棱長*6 S表=a*a*6 體積=棱長*棱長*棱長 V=a*a*a 3、長方形( C:周長 S:面積 a:邊長 )周長=(長+寬)*2 C=2(a+b) 面積=長*寬 S=ab 4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)(1)表面積(長*寬+長*高+寬*高)*2 S=2(ab+ah+bh) (2)體積=長*寬*高 V=abh 5、三角形 (s:面積 a:底 h:高) 面積=底*高÷2 s=ah÷2 三角形高=面積 *2÷底 三角形底=面積 *2÷高 6、平行四邊形 (s:面積 a:底 h:高) 面積=底*高 s=ah 7、梯形 (s:面積 a:上底 b:下底 h:高) 面積=(上底+下底)*高÷2 s=(a+b)* h÷28、圓形 (S:面積 C:周長 л d=直徑 r=半徑) (1)周長=直徑*л=2*л*半徑 C=лd=2лr (2)面積=半徑*半徑*л9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長) (1)側(cè)面積=底面周長*高=ch(2лr或лd) (2)表面積=側(cè)面積+底面積*2 (3)體積=底面積*高 (4)體積=側(cè)面積÷2*半徑10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑) 體積=底面積*高÷3 11、總數(shù)÷總份數(shù)=平均數(shù) 12、和差問題的公式:(和+差)÷2=大數(shù) (和-差)÷2=小數(shù) 13、和倍問題: 和÷(倍數(shù)-1)=小數(shù) 小數(shù)*倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù))14、差倍問題: 差÷(倍數(shù)-1)=小數(shù) 小數(shù)*倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù)) 15、相遇問題 相遇路程=速度和*相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間 16、濃度問題 溶質(zhì)的重量+溶劑的重量=溶液的重量 溶質(zhì)的重量÷溶液的重量*100%=濃度 溶液的重量*濃度=溶質(zhì)的重量 溶質(zhì)的重量÷濃度=溶液的重量17、利潤與折扣問題 利潤=售出價-成本; 利潤率=利潤÷成本*100%=(售出價÷成本-1)*100% 漲跌金額=本金*漲跌百分比; 利息=本金*利率*時間; 稅后利息=本金*利率*時間*(1-20%) 常用單位換算 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算:1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算: 1元=10角 1角=10分 1元=100分 時間單位換算:1世紀(jì)=100年 1年=12月 大月(31天)有:1/3/5/7/8/10/12月 小月(30天)的有:4/6/9/11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念第一章 數(shù)和數(shù)的運算 一 概念 (一)整數(shù) 1 整數(shù)的意義: 自然數(shù)和0都是整數(shù)。

      2 自然數(shù):我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。 一個物體也沒有,用0表示。

      0也是自然數(shù)。 3計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。

      每相鄰兩個計數(shù)單位之間的進(jìn)率都是10。這樣的計數(shù)法叫做十進(jìn)制計數(shù)法。

      4 數(shù)位: 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 5數(shù)的整除 整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。

      如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。

      因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。

      例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。

      3的倍數(shù)有:3、6、9、12……其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。 個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。

      個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。

      一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。

      一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。

      一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

      一個數(shù)的末三位數(shù)能被8(或125)整除,。

      6.關(guān)于數(shù)學(xué)的小知識

      負(fù)數(shù)的發(fā)現(xiàn)

      人們在生活中經(jīng)常會遇到各種相反意義的量。比如,在記帳時有余有虧;在計算糧倉存米時,有時要記進(jìn)糧食,有時要記出糧食。為了方便,人們就考慮了相反意義的數(shù)來表示。于是人們引入了正負(fù)數(shù)這個概念,把余錢進(jìn)糧食記為正,把虧錢、出糧食記為負(fù)??梢娬?fù)數(shù)是生產(chǎn)實踐中產(chǎn)生的。

      據(jù)史料記載,早在兩千多年前,我國就有了正負(fù)數(shù)的概念,掌握了正負(fù)數(shù)的運算法則。人們計算的時候用一些小竹棍擺出各種數(shù)字來進(jìn)行計算。這些小竹棍叫做“算籌"算籌也可以用骨頭和象牙來制作。

      我國三國時期的學(xué)者劉徽在建立負(fù)數(shù)的概念上有重大貢獻(xiàn)。劉徽首先給出了正負(fù)數(shù)的定義,他說:“今兩算得失相反,要令正負(fù)以名之。"意思是說,在計算過程中遇到具有相反意義的量,要用正數(shù)和負(fù)數(shù)來區(qū)分它們。

      劉徽第一次給出了正負(fù)區(qū)分正負(fù)數(shù)的方法。他說:“正算赤,負(fù)算黑;否則以邪正為異"意思是說,用紅色的小棍擺出的數(shù)表示正數(shù),用黑色的小棍擺出的數(shù)表示負(fù)數(shù);也可以用斜擺的小棍表示負(fù)數(shù),用正擺的小棍表示正數(shù)。

      我國古代著名的數(shù)學(xué)專著《九章算術(shù)》(成書于公元一世紀(jì))中,最早提出了正負(fù)數(shù)加減法的法則:“正負(fù)數(shù)曰:同名相除,異名相益,正無入負(fù)之,負(fù)無入正之;其異名相除,同名相益,正無入正之,負(fù)無入負(fù)之。"這里的“名"就是“號",“除"就是“減",“相益"、“相除"就是兩數(shù)的絕對值“相加"、“相減",“無"就是“零"。

      用現(xiàn)在的話說就是:“正負(fù)數(shù)的加減法則是:同符號兩數(shù)相減,等于其絕對值相減,異號兩數(shù)相減,等于其絕對值相加。零減正數(shù)得負(fù)數(shù),零減負(fù)數(shù)得正數(shù)。異號兩數(shù)相加,等于其絕對值相減,同號兩數(shù)相加,等于其絕對值相加。零加正數(shù)等于正數(shù),零加負(fù)數(shù)等于負(fù)數(shù)。"

      這段關(guān)于正負(fù)數(shù)的運算法則的敘述是完全正確的,與現(xiàn)在的法則完全一致!負(fù)數(shù)的引入是我國數(shù)學(xué)家杰出的貢獻(xiàn)之一。

      用不同顏色的數(shù)表示正負(fù)數(shù)的習(xí)慣,一直保留到現(xiàn)在?,F(xiàn)在一般用紅色表示負(fù)數(shù),報紙上登載某國經(jīng)濟(jì)上出現(xiàn)赤字,表明支出大于收入,財政上虧了錢。

      負(fù)數(shù)是正數(shù)的相反數(shù)。在實際生活中,我們經(jīng)常用正數(shù)和負(fù)數(shù)來表示意義相反的兩個量。夏天武漢氣溫高達(dá)42°C,你會想到武漢的確象火爐,冬天哈爾濱氣溫-32°C一個負(fù)號讓你感到北方冬天的寒冷。

      在現(xiàn)今的中小學(xué)教材中,負(fù)數(shù)的引入,是通過算術(shù)運算的方法引入的:只需以一個較小的數(shù)減去一個較大的數(shù),便可以得到一個負(fù)數(shù)。這種引入方法可以在某種特殊的問題情景中給出負(fù)數(shù)的直觀理解。而在古代數(shù)學(xué)中,負(fù)數(shù)常常是在代數(shù)方程的求解過程中產(chǎn)生的。對古代巴比倫的代數(shù)研究發(fā)現(xiàn),巴比倫人在解方程中沒有提出負(fù)數(shù)根的概念,即不用或未能發(fā)現(xiàn)負(fù)數(shù)根的概念。3世紀(jì)的希臘學(xué)者丟番圖的著作中,也只給出了方程的正根。然而,在中國的傳統(tǒng)數(shù)學(xué)中,已較早形成負(fù)數(shù)和相關(guān)的運算法則。

      除《九章算術(shù)》定義有關(guān)正負(fù)運算方法外,東漢末年劉烘(公元206年)、宋代揚輝(1261年)也論及了正負(fù)數(shù)加減法則,都與九章算術(shù)所說的完全一致。特別值得一提的是,元代朱世杰除了明確給出了正負(fù)數(shù)同號異號的加減法則外,還給出了關(guān)于正負(fù)數(shù)的乘除法則。

      負(fù)數(shù)在國外得到認(rèn)識和被承認(rèn),較之中國要晚得多。在印度,數(shù)學(xué)家婆羅摩笈多于公元628年才認(rèn)識負(fù)數(shù)可以是二次方程的根。而在歐洲14世紀(jì)最有成就的法國數(shù)學(xué)家丘凱把負(fù)數(shù)說成是荒謬的數(shù)。直到十七世紀(jì)荷蘭人日拉爾(1629年)才首先認(rèn)識和使用負(fù)數(shù)解決幾何問題。

      與中國古代數(shù)學(xué)家不同,西方數(shù)學(xué)家更多的是研究負(fù)數(shù)存在的合理性。16、17世紀(jì)歐洲大多數(shù)數(shù)學(xué)家不承認(rèn)負(fù)數(shù)是數(shù)。帕斯卡認(rèn)為從0減去4是純粹的胡說。帕斯卡的朋友阿潤德提出一個有趣的說法來反對負(fù)數(shù),他說(-1):1=1:(-1),那么較小的數(shù)與較大的數(shù)的比怎么能等于較大的數(shù)與較小的數(shù)比呢?直到1712年,連萊布尼茲也承認(rèn)這種說法合理。英國數(shù)學(xué)家瓦里承認(rèn)負(fù)數(shù),同時認(rèn)為負(fù)數(shù)小于零而大于無窮大(1655年)。他對此解釋到:因為a>0時,英國著名代數(shù)學(xué)家德·摩根 在1831年仍認(rèn)為負(fù)數(shù)是虛構(gòu)的。他用以下的例子說明這一點:“父親56歲,其子29歲。問何時父親年齡將是兒子的二倍?"他列方程56+x=2(29+x),并解得x=-2。他稱此解是荒唐的。當(dāng)然,歐洲18世紀(jì)排斥負(fù)數(shù)的人已經(jīng)不多了。隨著19世紀(jì)整數(shù)理論基礎(chǔ)的建立,負(fù)數(shù)在邏輯上的合理性才真正建立。

      7.數(shù)學(xué)小常識

      哥德巴赫猜想 大約在250年前,德國數(shù)字家哥德巴赫發(fā)現(xiàn)了這樣一個現(xiàn)象:任何大于5的整數(shù)都可以表示為3個質(zhì)數(shù)的和。

      他驗證了許多數(shù)字,這個結(jié)論都是正確的。但他卻找不到任何辦法從理論上徹底證明它,于是他在1742年6月7日寫信和當(dāng)時在柏林科學(xué)院工作的著名數(shù)學(xué)家歐拉請教。

      歐拉認(rèn)真地思考了這個問題。他首先逐個核對了一張長長的數(shù)字表: 6=2+2+2=3+3 8=2+3+3=3+5 9=3+3+3=2+7 10=2+3+5=5+5 11=5+3+3 12=5+5+2=5+7 99=89+7+3 100=11+17+71=97+3 101=97+2+2 102=97+2+3=97+5 …… 。

      展開哥德巴赫猜想 大約在250年前,德國數(shù)字家哥德巴赫發(fā)現(xiàn)了這樣一個現(xiàn)象:任何大于5的整數(shù)都可以表示為3個質(zhì)數(shù)的和。他驗證了許多數(shù)字,這個結(jié)論都是正確的。

      但他卻找不到任何辦法從理論上徹底證明它,于是他在1742年6月7日寫信和當(dāng)時在柏林科學(xué)院工作的著名數(shù)學(xué)家歐拉請教。歐拉認(rèn)真地思考了這個問題。

      他首先逐個核對了一張長長的數(shù)字表: 6=2+2+2=3+3 8=2+3+3=3+5 9=3+3+3=2+7 10=2+3+5=5+5 11=5+3+3 12=5+5+2=5+7 99=89+7+3 100=11+17+71=97+3 101=97+2+2 102=97+2+3=97+5 …… 這張表可以無限延長,而每一次延長都使歐拉對肯定哥德巴赫的猜想增加了信心。而且他發(fā)現(xiàn)證明這個問題實際上應(yīng)該分成兩部分。

      即證明所有大于2的偶數(shù)總能寫成2個質(zhì)數(shù)之和,所有大于7的奇數(shù)總能寫成3個質(zhì)數(shù)之和。當(dāng)他最終堅信這一結(jié)論是真理的時候,就在6月30日復(fù)信給哥德巴赫。

      信中說:"任何大于2的偶數(shù)都是兩個質(zhì)數(shù)的和,雖然我還不能證明它,但我確信無疑這是完全正確的定理"由于歐拉是頗負(fù)盛名的數(shù)學(xué)家、科學(xué)家,所以他的信心吸引和鼓舞無數(shù)科學(xué)家試圖證明它,但直到19世紀(jì)末也沒有取得任何進(jìn)展。這一看似簡單實則困難無比的數(shù)論問題長期困擾著數(shù)學(xué)界。

      誰能證明它誰就登上了數(shù)學(xué)王國中一座高聳奇異的山峰。因此有人把它比作"數(shù)學(xué)皇冠上的一顆明珠"。

      實際上早已有人對大量的數(shù)字進(jìn)行了驗證,對偶數(shù)的驗證已達(dá)到1.3億個以上,還沒有發(fā)現(xiàn)任何反例。那么為什么還不能對這個問題下結(jié)論呢?這是因為自然數(shù)有無限多個,不論驗證了多少個數(shù),也不能說下一個數(shù)必然如此。

      數(shù)學(xué)的嚴(yán)密和精確對任何一個定理都要給出科學(xué)的證明。所以"哥德巴赫猜想"幾百年來一直未能變成定理,這也正是它以"猜想"身份聞名天下的原因。

      要證明這個問題有幾種不同辦法,其中之一是證明某數(shù)為兩數(shù)之和,其中第一個數(shù)的質(zhì)因數(shù)不超過a 個,第二數(shù)的質(zhì)因數(shù)不超過b個。這個命題稱為(a+b)。

      最終要達(dá)到的目標(biāo)是證明(a+b)為(1+1)。 1920年,挪威數(shù)學(xué)家布朗教授用古老的篩選法證明了任何一個大于2的偶數(shù)都能表示為9個質(zhì)數(shù)的乘積與另外9個質(zhì)數(shù)乘積的和,即證明了(a+b)為(9+9)。

      1924年,德國數(shù)學(xué)家證明了(7+7); 1932年,英國數(shù)學(xué)家證明了(6+6); 1937年,蘇聯(lián)數(shù)學(xué)家維諾格拉多夫證明了充分大的奇數(shù)可以表示為3個奇質(zhì)數(shù)之和,這使歐拉設(shè)想中的奇數(shù)部分有了結(jié)論,剩下的只有偶數(shù)部分的命題了。 1938年,我國數(shù)學(xué)家華羅庚證明了幾乎所有偶數(shù)都可以表示為一個質(zhì)數(shù)和另一個質(zhì)數(shù)的方冪之和。

      1938年到1956年,蘇聯(lián)數(shù)學(xué)家又相繼證明了(5+5),(4+4),(3+3)。 1957年,我國數(shù)學(xué)家王元證明了(2+3); 1962年,我國數(shù)學(xué)家潘承洞與蘇聯(lián)數(shù)學(xué)家巴爾巴恩各自獨立證明了(1+5); 1963年,潘承洞、王元和巴爾巴恩又都證明了(1+4)。

      1965年,幾位數(shù)學(xué)家同時證明了(1+3)。 1966年,我國青年數(shù)學(xué)家陳景潤在對篩選法進(jìn)行了重要改進(jìn)之后,終于證明了(1+2)。

      他的證明震驚中外,被譽為"推動了群山,"并被命名為"陳氏定理"。他證明了如下的結(jié)論:任何一個充分大的偶數(shù),都可以表示成兩個數(shù)之和,其中一個數(shù)是質(zhì)數(shù),別一個數(shù)或者是質(zhì)數(shù),或者是兩個質(zhì)數(shù)的乘積。

      收起。

      8.數(shù)學(xué)趣味小知識 簡短的 20到50字左右

      趣味數(shù)學(xué)小知識 數(shù)論部分: 1、沒有最大的質(zhì)數(shù)。

      歐幾里得給出了優(yōu)美而簡單的證明。 2、哥德巴赫猜想:任何一個偶數(shù)都能表示成兩個質(zhì)數(shù)之和。

      陳景潤的成果為:任何一個偶數(shù)都能表示成一個質(zhì)數(shù)和不多于兩個質(zhì)數(shù)的乘積之和。 3、費馬大定理:x的n次方+y的n次方=z的n次方,n>2時沒有整數(shù)解。

      歐拉證明了3和4,1995年被英國數(shù)學(xué)家 安德魯*懷爾斯 證明。 拓?fù)鋵W(xué)部分: 1、多面體點面棱的關(guān)系:定點數(shù)+面數(shù)=棱數(shù)+2,笛卡爾提出,歐拉證明,也稱歐拉定理。

      2、歐拉定理推論:可能只有5種正多面體,正四面體,正八面體,正六面體,正二十面體,正十二面體。 3、把空間翻過來,左手系的物體就能變成右手系的,通過克萊因瓶模擬,一節(jié)很好的頭腦體操, 摘自:/bbs2/ThreadDetail.aspx?id=31900。

      9.數(shù)學(xué)小知識50字以上,200字以下

      1、數(shù)學(xué)是無窮的科學(xué). ——外爾(Weil)

      2、問題是數(shù)學(xué)的心臟.—— 哈爾默斯(P.R.Halmos )

      3、只要一門科學(xué)分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預(yù)示著獨立發(fā)展的終止或衰亡.—— 希爾伯特(Hilbert )

      4、數(shù)學(xué)中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.——高斯 (Gauss)

      5、數(shù)學(xué)是科學(xué)6、數(shù)學(xué)比喻: 古希臘哲學(xué)家芝諾號稱"悖論之父",他有四個數(shù)學(xué)悖論一直傳到今天。他曾講過一句名言:"大圓圈比小圓圈掌握的知識要多一點,但因為大圓圈的圓周比小圓圈的長,所以它與外界空白的接觸面也就比小圓圈大,因此更感到知識的不足,需要努力去學(xué)習(xí)"。

      7、把數(shù)學(xué)當(dāng)成一門語言學(xué)習(xí),學(xué)會每一個術(shù)語的用法,熟悉每一個符號的意義

      8、不要放過任何一道看上去很簡單的例題——他們往往并不那么簡單,或者可以引申出很多知識點。

      9、會用數(shù)學(xué)公式,并不說明你會數(shù)學(xué)。

      10、如果不是天才的話,想學(xué)數(shù)學(xué)就不要想玩游戲——你以為你做到了,其實你的數(shù)學(xué)水平并沒有和你通關(guān)的能力一起變高——其實可以時刻記?。簩W(xué)數(shù)學(xué)是你玩“生活”這個大游戲玩的更好!

      的皇后,而數(shù)論是數(shù)學(xué)的皇后 ——高斯(Gauss)

      算數(shù)小知識

      聲明:沿途百知所有(內(nèi)容)均由用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流。若您的權(quán)利被侵害,請聯(lián)系我們將盡快刪除