1.初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)一、基本知識(shí)一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)數(shù)軸:①畫(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線(xiàn)上向右的方向?yàn)檎较?,就得到?shù)軸。
②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。
②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
③一個(gè)數(shù)與0相加不變。減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。
②0不能作除數(shù)。乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。2、實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。
②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。
④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。
③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。3、代數(shù)式代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類(lèi)項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng)。②把同類(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。
③在合并同類(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。4、整式與分式整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。
②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。冪的運(yùn)算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。
整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。公式兩條:平方差公式/完全平方公式整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。
②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。
②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱(chēng)為原方程的增根。B、方程與不等式1、方程與方程組一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程。
2.數(shù)學(xué)小常識(shí)
哥德巴赫猜想大約在250年前,德國(guó)數(shù)字家哥德巴赫發(fā)現(xiàn)了這樣一個(gè)現(xiàn)象:任何大于5的整數(shù)都可以表示為3個(gè)質(zhì)數(shù)的和。
他驗(yàn)證了許多數(shù)字,這個(gè)結(jié)論都是正確的。但他卻找不到任何辦法從理論上徹底證明它,于是他在1742年6月7日寫(xiě)信和當(dāng)時(shí)在柏林科學(xué)院工作的著名數(shù)學(xué)家歐拉請(qǐng)教。
歐拉認(rèn)真地思考了這個(gè)問(wèn)題。他首先逐個(gè)核對(duì)了一張長(zhǎng)長(zhǎng)的數(shù)字表: 6=2+2+2=3+3 8=2+3+3=3+5 9=3+3+3=2+7 10=2+3+5=5+5 11=5+3+3 12=5+5+2=5+7 99=89+7+3 100=11+17+71=97+3 101=97+2+2 102=97+2+3=97+5 …… 這張表可以無(wú)限延長(zhǎng),而每一次延長(zhǎng)都使歐拉對(duì)肯定哥德巴赫的猜想增加了信心。
而且他發(fā)現(xiàn)證明這個(gè)問(wèn)題實(shí)際上應(yīng)該分成兩部分。即證明所有大于2的偶數(shù)總能寫(xiě)成2個(gè)質(zhì)數(shù)之和,所有大于7的奇數(shù)總能寫(xiě)成3個(gè)質(zhì)數(shù)之和。
當(dāng)他最終堅(jiān)信這一結(jié)論是真理的時(shí)候,就在6月30日復(fù)信給哥德巴赫。信中說(shuō):"任何大于2的偶數(shù)都是兩個(gè)質(zhì)數(shù)的和,雖然我還不能證明它,但我確信無(wú)疑這是完全正確的定理"由于歐拉是頗負(fù)盛名的數(shù)學(xué)家、科學(xué)家,所以他的信心吸引和鼓舞無(wú)數(shù)科學(xué)家試圖證明它,但直到19世紀(jì)末也沒(méi)有取得任何進(jìn)展。
這一看似簡(jiǎn)單實(shí)則困難無(wú)比的數(shù)論問(wèn)題長(zhǎng)期困擾著數(shù)學(xué)界。誰(shuí)能證明它誰(shuí)就登上了數(shù)學(xué)王國(guó)中一座高聳奇異的山峰。
因此有人把它比作"數(shù)學(xué)皇冠上的一顆明珠"。 實(shí)際上早已有人對(duì)大量的數(shù)字進(jìn)行了驗(yàn)證,對(duì)偶數(shù)的驗(yàn)證已達(dá)到1.3億個(gè)以上,還沒(méi)有發(fā)現(xiàn)任何反例。
那么為什么還不能對(duì)這個(gè)問(wèn)題下結(jié)論呢?這是因?yàn)樽匀粩?shù)有無(wú)限多個(gè),不論驗(yàn)證了多少個(gè)數(shù),也不能說(shuō)下一個(gè)數(shù)必然如此。數(shù)學(xué)的嚴(yán)密和精確對(duì)任何一個(gè)定理都要給出科學(xué)的證明。
所以"哥德巴赫猜想"幾百年來(lái)一直未能變成定理,這也正是它以"猜想"身份聞名天下的原因。 要證明這個(gè)問(wèn)題有幾種不同辦法,其中之一是證明某數(shù)為兩數(shù)之和,其中第一個(gè)數(shù)的質(zhì)因數(shù)不超過(guò)a 個(gè),第二數(shù)的質(zhì)因數(shù)不超過(guò)b個(gè)。
這個(gè)命題稱(chēng)為(a+b)。最終要達(dá)到的目標(biāo)是證明(a+b)為(1+1)。
1920年,挪威數(shù)學(xué)家布朗教授用古老的篩選法證明了任何一個(gè)大于2的偶數(shù)都能表示為9個(gè)質(zhì)數(shù)的乘積與另外9個(gè)質(zhì)數(shù)乘積的和,即證明了(a+b)為(9+9)。 1924年,德國(guó)數(shù)學(xué)家證明了(7+7); 1932年,英國(guó)數(shù)學(xué)家證明了(6+6); 1937年,蘇聯(lián)數(shù)學(xué)家維諾格拉多夫證明了充分大的奇數(shù)可以表示為3個(gè)奇質(zhì)數(shù)之和,這使歐拉設(shè)想中的奇數(shù)部分有了結(jié)論,剩下的只有偶數(shù)部分的命題了。
1938年,我國(guó)數(shù)學(xué)家華羅庚證明了幾乎所有偶數(shù)都可以表示為一個(gè)質(zhì)數(shù)和另一個(gè)質(zhì)數(shù)的方冪之和。 1938年到1956年,蘇聯(lián)數(shù)學(xué)家又相繼證明了(5+5),(4+4),(3+3)。
1957年,我國(guó)數(shù)學(xué)家王元證明了(2+3); 1962年,我國(guó)數(shù)學(xué)家潘承洞與蘇聯(lián)數(shù)學(xué)家巴爾巴恩各自獨(dú)立證明了(1+5); 1963年,潘承洞、王元和巴爾巴恩又都證明了(1+4)。 1965年,幾位數(shù)學(xué)家同時(shí)證明了(1+3)。
1966年,我國(guó)青年數(shù)學(xué)家陳景潤(rùn)在對(duì)篩選法進(jìn)行了重要改進(jìn)之后,終于證明了(1+2)。他的證明震驚中外,被譽(yù)為"推動(dòng)了群山,"并被命名為"陳氏定理"。
他證明了如下的結(jié)論:任何一個(gè)充分大的偶數(shù),都可以表示成兩個(gè)數(shù)之和,其中一個(gè)數(shù)是質(zhì)數(shù),別一個(gè)數(shù)或者是質(zhì)數(shù),或者是兩個(gè)質(zhì)數(shù)的乘積。
3.初中階段數(shù)學(xué)知識(shí)點(diǎn)
初中數(shù)學(xué)知識(shí)點(diǎn)1、一元一次方程根的情況 △=b2-4ac 當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根2、平行四邊形的性質(zhì):① 兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
② 平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線(xiàn)段叫他的對(duì)角線(xiàn)。③ 平行四邊形的對(duì)邊/對(duì)角相等。
④平行四邊形的對(duì)角線(xiàn)互相平分。菱形:①一組鄰邊相等的平行四邊形是菱形 ②領(lǐng)心的四條邊相等,兩條對(duì)角線(xiàn)互相垂直平分,每一組對(duì)角線(xiàn)平分一組對(duì)角。
③判定條件:定義/對(duì)角線(xiàn)互相垂直的平行四邊形/四條邊都相等的四邊形。矩形與正方形:① 有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。
② 矩形的對(duì)角線(xiàn)相等,四個(gè)角都是直角。③ 對(duì)角線(xiàn)相等的平行四邊形是矩形。
④ 正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。⑤一組鄰邊相等的矩形是正方形。
多邊形:①N邊形的內(nèi)角和等于(N-2)180度 ②多邊心內(nèi)角的一邊與另一邊的反向延長(zhǎng)線(xiàn)所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這個(gè)多邊形的內(nèi)角和(都等于360度) 平均數(shù):對(duì)于N個(gè)數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個(gè)N個(gè)數(shù)的算術(shù)平均數(shù),記為X 加權(quán)平均數(shù):一組數(shù)據(jù)里各個(gè)數(shù)據(jù)的重要程度未必相同,因而,在計(jì)算這組數(shù)據(jù)的平均數(shù)時(shí)往往給每個(gè)數(shù)據(jù)加一個(gè)權(quán),這就是加權(quán)平均數(shù)。二、基本定理1、過(guò)兩點(diǎn)有且只有一條直線(xiàn) 2、兩點(diǎn)之間線(xiàn)段最短 3、同角或等角的補(bǔ)角相等 4、同角或等角的余角相等5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直 6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短 7、平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行 8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行 9、同位角相等,兩直線(xiàn)平行10、內(nèi)錯(cuò)角相等,兩直線(xiàn)平行 11、同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行 12、兩直線(xiàn)平行,同位角相等13、兩直線(xiàn)平行,內(nèi)錯(cuò)角相等 14、兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ) 15、定理 三角形兩邊的和大于第三邊 16、推論 三角形兩邊的差小于第三邊 17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18、推論1 直角三角形的兩個(gè)銳角互余 19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22、邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的 兩個(gè)三角形全等 24、推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25、邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27、定理1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等 28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上 29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)31、推論1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊 32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合 33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35、推論1 三個(gè)角都相等的三角形是等邊三角形 36、推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半 39、定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等 40、逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42、定理1 關(guān)于某條直線(xiàn)對(duì)稱(chēng)的兩個(gè)圖形是全等形 43、定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)44、定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對(duì)稱(chēng),如果它們的對(duì)應(yīng)線(xiàn)段或延長(zhǎng)線(xiàn)相交,那么交點(diǎn)在對(duì)稱(chēng)軸上 45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對(duì)稱(chēng) 46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形 48、定理 四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360° 50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)*180° 51、推論 任意多邊的外角和等于360° 52、平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53、平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54、推論 夾在兩條平行線(xiàn)間的平行線(xiàn)段相等55、平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線(xiàn)互相平分 56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形 58、平行四邊形判定定。
4.關(guān)于數(shù)學(xué)的小知識(shí)
數(shù)學(xué)小知識(shí)--------------------------------------------------------------------------------
數(shù)學(xué)符號(hào)的起源
數(shù)學(xué)除了記數(shù)以外,還需要一套數(shù)學(xué)符號(hào)來(lái)表示數(shù)和數(shù)、數(shù)和形的相互關(guān)系。數(shù)學(xué)符號(hào)的發(fā)明和使用比數(shù)字晚,但是數(shù)量多得多?,F(xiàn)在常用的有200多個(gè),初中數(shù)學(xué)書(shū)里就不下20多種。它們都有一段有趣的經(jīng)歷。
例如加號(hào)曾經(jīng)有好幾種,現(xiàn)在通用"+"號(hào)。
"+"號(hào)是由拉丁文"et"("和"的意思)演變而來(lái)的。十六世紀(jì),意大利科學(xué)家塔塔里亞用意大利文"più"(加的意思)的第一個(gè)字母表示加,草為"μ"最后都變成了"+"號(hào)。
"-"號(hào)是從拉丁文"minus"("減"的意思)演變來(lái)的,簡(jiǎn)寫(xiě)m,再省略掉字母,就成了"-"了。
到了十五世紀(jì),德國(guó)數(shù)學(xué)家魏德美正式確定:"+"用作加號(hào),"-"用作減號(hào)。
乘號(hào)曾經(jīng)用過(guò)十幾種,現(xiàn)在通用兩種。一個(gè)是"*",最早是英國(guó)數(shù)學(xué)家?jiàn)W屈特1631年提出的;一個(gè)是"· ",最早是英國(guó)數(shù)學(xué)家赫銳奧特首創(chuàng)的。德國(guó)數(shù)學(xué)家萊布尼茨認(rèn)為:"*"號(hào)象拉丁字母"X",加以反對(duì),而贊成用"· "號(hào)。他自己還提出用"п"表示相乘??墒沁@個(gè)符號(hào)現(xiàn)在應(yīng)用到集合論中去了。
到了十八世紀(jì),美國(guó)數(shù)學(xué)家歐德萊確定,把"*"作為乘號(hào)。他認(rèn)為"*"是"+"斜起來(lái)寫(xiě),是另一種表示增加的符號(hào)。
"÷"最初作為減號(hào),在歐洲大陸長(zhǎng)期流行。直到1631年英國(guó)數(shù)學(xué)家?jiàn)W屈特用":"表示除或比,另外有人用"-"(除線(xiàn))表示除。后來(lái)瑞士數(shù)學(xué)家拉哈在他所著的《代數(shù)學(xué)》里,才根據(jù)群眾創(chuàng)造,正式將"÷"作為除號(hào)。
十六世紀(jì)法國(guó)數(shù)學(xué)家維葉特用"="表示兩個(gè)量的差別??墒怯?guó)牛津大學(xué)數(shù)學(xué)、修辭學(xué)教授列考爾德覺(jué)得:用兩條平行而又相等的直線(xiàn)來(lái)表示兩數(shù)相等是最合適不過(guò)的了,于是等于符號(hào)"="就從1540年開(kāi)始使用起來(lái)。
1591年,法國(guó)數(shù)學(xué)家韋達(dá)在菱中大量使用這個(gè)符號(hào),才逐漸為人們接受。十七世紀(jì)德國(guó)萊布尼茨廣泛使用了"="號(hào),他還在幾何學(xué)中用"∽"表示相似,用"≌"表示全等。
大于號(hào)"〉"和小于號(hào)"〈",是1631年英國(guó)著名代數(shù)學(xué)家赫銳奧特創(chuàng)用。至于≯""≮"、"≠"這三個(gè)符號(hào)的出現(xiàn),是很晚很晚的事了。大括號(hào)"{ }"和中括號(hào)"[ ]"是代數(shù)創(chuàng)始人之一魏治德創(chuàng)造
5.初中數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
數(shù)與代數(shù)A:數(shù)與式:1:有理數(shù) 有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù) ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù) 數(shù)軸:①畫(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線(xiàn)上向右的方向?yàn)檎较?,就得到?shù)軸 ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示.③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù).在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等.④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù).絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值.②正數(shù)的絕對(duì)值是他本身/負(fù)數(shù)的絕對(duì)值是他的相反數(shù)/0的絕對(duì)值是0.兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小.有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加.②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值.③一個(gè)數(shù)與0相加不變.減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù).乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘.②任何數(shù)與0相乘得0.③乘積為1的兩個(gè)有理數(shù)互為倒數(shù).除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù).②0不能作除數(shù).乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù).混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的.2:實(shí)數(shù)無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根.②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根.③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根.④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù).立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根.②正數(shù)的立方根是正數(shù)/0的立方根是0/負(fù)數(shù)的立方根是負(fù)數(shù).③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù).實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù).②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣.③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示.3:代數(shù)式代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式希望對(duì)你有幫助。