绝对不卡福利网站|中文字幕在笑第一页|午夜福利中文字幕首页|久久精彩视频免费观看

  • <abbr id="lczsv"></abbr>
    <blockquote id="lczsv"></blockquote>

    <track id="lczsv"><table id="lczsv"><nobr id="lczsv"></nobr></table></track>
    • 數(shù)字常識

      2021-09-13 綜合 86閱讀 投稿:徘徊

      1. 關(guān)于數(shù)字的一些小知識

      數(shù)字的由來 數(shù)字可謂是數(shù)學(xué)大廈的基石,也是人們最早研究的數(shù)學(xué)對象。

      在幾百萬年前。我們的祖先還只知道“有”、“無”、“多”、“少”的概念,而不知道數(shù)為何物。

      隨著文明的進步,這些模糊不清 的概念無法滿足生產(chǎn)、生活的需要。例如我國古書《周易》上就有“ 上古結(jié)繩而治”的載 。

      即當(dāng)發(fā)生一次重要事件時,就在繩子上打一 個結(jié)作為標(biāo)記。 這種方法雖然簡單,但至少表明人們已經(jīng)有了數(shù)的概念。

      文字出現(xiàn)以后,人們試圖數(shù)學(xué)以符號的形式記錄下來。于是就出現(xiàn) 了各種種樣的記錄方法。

      古埃及人用“|”表示一,用“‖”表示二; 古羅馬人用“Ⅰ”表示一,用“Ⅱ”表示二 。這種方法雖然有效, 但 是當(dāng)數(shù)字很大時記錄起來十分不便。

      例如我們要表示一百時,難道要寫 一百個“|”嗎?當(dāng)然,古羅馬人也看到了問題的所在 ,于是他們發(fā)明 了羅馬數(shù)字Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,L,C 分別表示 1,2,3,4,5,6,7,8,9,10,50,100??磥硭坪鯁栴}得到了解決, 然而要表示一萬還是十分困難。

      這也是羅馬數(shù)字沒有被廣泛采用的原因。 羅馬數(shù)字的失敗表明,任何想使每一個數(shù)字對應(yīng)一個符號的記數(shù)方法都 是徒勞的。

      直到公元八世紀(jì)印度人發(fā)明了一種只含有1,2,3,4,5,6, 7,8,9,九個符號的記數(shù)法,并且約定數(shù)字位置決定數(shù)值大小。例如數(shù) 字89中8表示八個十,而9表示九個一。

      這樣一來表示任何數(shù)都是輕而一 舉的事情了。于是,這一發(fā)明很快被商人帶入阿拉伯首都巴格達城。

      并 很快得以流傳,并稱之為阿拉伯?dāng)?shù)字。由于這一記數(shù)法簡潔明了,而被 使用至今。

      成為世界數(shù)學(xué)的通用語言。難怪恩格斯稱它為“最美妙的發(fā) 明”。

      ************************* 阿拉伯?dāng)?shù)字的由來 世界各國數(shù)字的方法有很多種,其中一種數(shù)字是國際上通用的,這就是阿拉伯?dāng)?shù)字:0、1、2、3、4、5、6、7、8、9。 其實,阿拉伯?dāng)?shù)字并不是阿拉伯人發(fā)明的,而是古代印度人創(chuàng)造的。

      古時候,印度人把一些橫線刻在石板上表示數(shù),一橫表示1,二橫表示2……后來,他們改用棕櫚樹葉或白樺樹皮作為書寫材料,并把一些筆畫連了起來,例如,把表示2的兩橫寫成Z,把表示3的三橫寫成等。 公元8世紀(jì),印度一位叫堪克的數(shù)學(xué)家,攜帶數(shù)字書籍和天文圖表,隨著商人的駝群,來到了阿拉伯的首都巴格達城。

      這時,中國的造紙術(shù)正好傳入阿拉伯。于是,他的書籍很快被翻譯成阿拉伯文,在阿拉伯半島上流傳開來,阿拉伯?dāng)?shù)字也隨之傳播到阿拉伯各地。

      隨著東西方商業(yè)的往來,公元12世紀(jì),這套數(shù)字由阿拉伯商人傳入歐洲。歐洲人很喜愛這套方便適用的記數(shù)符號,他們以為這是阿拉伯?dāng)?shù)字,造成了這一歷史的誤會。

      盡管后來人們知道了事情的真相,但由于習(xí)慣了,就一直沒有改正過來。 阿拉伯?dāng)?shù)字傳人歐洲各國后,由于輾轉(zhuǎn)傳抄,模樣兒也逐漸發(fā)生了變化,經(jīng)過1000多年的不斷改進,到了1480年時,這些數(shù)字的寫法才與現(xiàn)在的寫法差不多。

      1522年,當(dāng)阿拉伯?dāng)?shù)字在英國人同斯托的書中出現(xiàn)時,已經(jīng)與現(xiàn)在的寫法基本一致了。 由于阿拉伯?dāng)?shù)字及其所采用的十進位制記數(shù)法具有許多優(yōu)點,因此逐漸傳播到全世界,為世界各國所使用。

      ********************************** 阿拉伯?dāng)?shù)字的由來 古代印度人創(chuàng)造了阿拉伯?dāng)?shù)字后,大約到了公元7世紀(jì)的時候,這些數(shù)字傳到了阿拉伯地區(qū)。到13世紀(jì)時,意大利數(shù)學(xué)家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯?dāng)?shù)字做了詳細(xì)的介紹。

      后來,這些數(shù)字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數(shù)字是從阿拉伯地區(qū)傳入的,所以便把這些數(shù)字叫做阿拉伯?dāng)?shù)字。以后,這些數(shù)字又從歐洲傳到世界各國。

      阿拉伯?dāng)?shù)字傳入我國,大約是13到14世紀(jì)。由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯?dāng)?shù)字當(dāng)時在我國沒有得到及時的推廣運用。

      本世紀(jì)初,隨著我國對外國數(shù)學(xué)成就的吸收和引進,阿拉伯?dāng)?shù)字在我國才開始慢慢使用,阿拉伯?dāng)?shù)字在我國推廣使用才有100多年的歷史。阿拉伯?dāng)?shù)字現(xiàn)在已成為人們學(xué)習(xí)、生活和交往中最常用的數(shù)字了。

      ************************ 羅馬數(shù)字的由來 羅馬數(shù)字是一種現(xiàn)在應(yīng)用較少的數(shù)量表示方式。它的產(chǎn)生晚於中國甲骨文中的數(shù)碼,更晚於埃及人的一進位數(shù)字。

      但是,它的產(chǎn)生標(biāo)志著一種古代文明的進度。大約在兩千五百年前,羅馬人還處在文化發(fā)展的初期,當(dāng)時他們用手指作為計算工具。

      為了表示1、2、3、4個物體,就分別伸出1、2、3、4根手指;表示5個物體就伸出一只手;表示10個物體就伸出兩只手。這種習(xí)慣,人類一直沿用到今天。

      人們在交談中,往往就是運用這樣的手勢來表示數(shù)字的。當(dāng)時,羅馬人為了記錄這些數(shù)字,便在羊皮上畫出Ⅰ、Ⅱ、Ⅲ來代替手指的數(shù),要表示一只手時,就寫成"Ⅴ",表示大拇指與食指張開的形狀;表示兩只手時,就畫成"ⅤⅤ",后來又寫成一只手向上,一只手向下的"Ⅹ",這就是羅馬數(shù)字的雛形。

      之后為了表示較大的數(shù),羅馬人用符號C表示100,C是拉丁字"Century"的頭一個字母,century就是100的意思。用符號M表示1000。

      M是拉丁字"mile'的頭一個字母,mile就是1000的意思。取字母C的一半成為符號L,表示50。

      用字母D表示500。若在數(shù)的上面畫一橫線,這個數(shù)就擴大。

      2. 有誰知道關(guān)于數(shù)字的知識嗎

      古代印度人發(fā)明了包括“零”在內(nèi)的十個數(shù)字符號,還發(fā)明了現(xiàn)在一般通用的定位計數(shù)的十進位法.由于定位計數(shù),同一個數(shù)字符號因其所在位置不同,就可以表示不同數(shù)值.如果某一位沒有數(shù)字,則在該位上寫上“0”.“0”的應(yīng)用,使十進位法臻于完善,意義重大.十個數(shù)字符號后來由阿拉伯人傳人歐洲,被歐洲人誤稱為阿拉伯?dāng)?shù)字.由于采用計數(shù)的十進位法,加上阿拉伯?dāng)?shù)字本身筆劃簡單,寫起來方便,看起來清楚,特別是用來筆算時,演算很便利.因此隨著歷史的發(fā)展,阿拉伯?dāng)?shù)字逐漸在各國流行起來,成為世界各國通用的數(shù)字阿拉伯?dāng)?shù)字傳入我國,大約是13到14世紀(jì).由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯?dāng)?shù)字當(dāng)時在我國沒有得到及時的推廣運用.本世紀(jì)初,隨著我國對外國數(shù)學(xué)成就的吸收和引進,阿拉伯?dāng)?shù)字在我國才開始慢慢使用,阿拉伯?dāng)?shù)字在我國推廣使用才有100多年的歷史.阿拉伯?dāng)?shù)字現(xiàn)在已成為人們學(xué)習(xí)、生活和交往中最常用的數(shù)字了.。

      3. 小學(xué)數(shù)學(xué)關(guān)于數(shù)字的知識

      (一)整數(shù) 1、分類:自然數(shù)、0、…… 2、讀、寫法 → 數(shù)的改寫: ⑴ 以“萬”或“億”作單位的數(shù)。

      例:7645000=764.5萬;146000000=1.46億 ⑵ 省略“萬”或“億”后面的尾數(shù)。 例:7645000≈765萬;146000000≈1億 3、大小比較 4、四則運算的意義和法則 ⑴ 加法 意義:把兩個數(shù)合并成一個數(shù)的運算叫做加法。

      法則:相同數(shù)位對齊,從個位數(shù)加起,哪一位上的數(shù)滿十就要向前一位進一。 ⑵ 減法 意義:已知兩個加數(shù)的和與其中一個加數(shù),求另一個加數(shù)的運算叫做減法。

      法則:相同數(shù)位對齊,從個位減起,哪一位上的數(shù)不夠減,從前一位退一,在本位上加十再減。 ⑶ 乘法 意義:求幾個相同加數(shù)和的簡便運算叫做乘法。

      法則:乘數(shù)是兩位數(shù)的乘法,①先用乘數(shù)個位上的數(shù)去乘被乘數(shù),得數(shù)的末位和乘數(shù)的個位對齊;②再用乘數(shù)十位上的數(shù)去乘被乘數(shù),得數(shù)的末位和乘數(shù)的十位對齊;③最后把兩次乘得的積加起來。 ⑷ 除法 意義:已知兩個因數(shù)的積與其中的一個因數(shù),求另一個因數(shù)的運算叫做除法。

      法則:除數(shù)是兩位數(shù)的除法,①從被除數(shù)的高位起,先用除數(shù)試除被除數(shù)的前兩位數(shù),如果它比除數(shù)小再試除前三位數(shù);②除到被除數(shù)的哪一位,就在那一位上面寫商;③每次除后余下的數(shù)必須比除數(shù)小。 5、運算定律和性質(zhì) ⑴ 定律 ①加法交換律 a+b=b+a ②加法結(jié)合律 (a+b)+c=a+(b+c) ③乘法交換律 ab=ba ④乘法結(jié)合律 (ab)c=a(bc) ⑤乘法分配律 (a+b)c=ac+bc ⑵ 性質(zhì) ①商不變的性質(zhì):在除法里,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變。

      ②減法的性質(zhì):從一個數(shù)中連續(xù)減去兩個數(shù)等于從這個數(shù)中減去這兩個數(shù)的和。 a-b-c=a-(b+c) 6、四則混合運算 ⑴ 第一級運算:通常把加減法叫做第一級運算。

      ⑵ 第二級運算:通常把乘除法叫做第二級運算。 在一個沒有括號的算式里,如只含有同一級運算要從左往右依次計算。

      (如例1、例2) 例1:520-160+240-380 =360+240-380 =600-380 =220 例2:125*80÷25*40 =10000÷25*40 =400*40 =16000 ⑶ 不帶括號的:一個算式里,如果含有兩級運算,要先做第二級運算,在做第一級運算。(如例3) ⑷ 帶小括號的:一個算式里,如果有括號,要先算括號里面的,再算括號外面的。

      (如例4) ⑸ 帶中、小括號的:一個算式里,如果有中括號和小括號,要先算小括號里面的,再算中括號里面的。(如例5) 例3:920-800÷20*5 =920-40*5 =920-200 =720 例4:(42*150-70)÷70 =(6300-70)÷70 =6230÷70 =89 例5:[3440-(150-70)]÷70 =[3440-80]÷70 =3360÷70 =48 7、整除 ⑴ 倍數(shù) → 公倍數(shù) → 最小公倍數(shù)(例:24、48……都是8和12的公倍數(shù);其中24是8和12的最小公倍數(shù)) ⑵ 約數(shù) → 公約數(shù) → 最大公約數(shù)(例:1、2、3、6都是18和24的公約數(shù),其中6是18和24的最大公約數(shù)) 質(zhì)數(shù) → 合數(shù) → 互質(zhì)數(shù)(公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù)。

      例:5和7是互質(zhì)數(shù)) 質(zhì)因數(shù) → 分解質(zhì)因數(shù)(把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。例:42=2*3*7) ⑶ 能被2、5、3整除的數(shù)的特征: 能被2整除的數(shù)的特征(個位上是0、2、4、6、8的數(shù)都能被2整除) 能被5整除的數(shù)的特征(個位上是0或5的數(shù)都能被5整除) 能被3整除的數(shù)的特征(一個數(shù)的各位數(shù)上的數(shù)字和能被3整除,這個數(shù)就能被3整除) ⑷ 偶數(shù)和奇數(shù) ①偶數(shù)(能被2整除的數(shù)叫做偶數(shù),如:2、4、6、8、10……) ②奇數(shù)(不能被2整除的數(shù)叫做奇數(shù),如:1、3、5、7、9……) (二)小數(shù) 1、小數(shù)的意義:分母是10、100、1000……的十進制分?jǐn)?shù),改寫成不帶分母形式的數(shù),叫做小數(shù)。

      2、小數(shù)的讀、寫法 ⑴ 小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法來讀(整數(shù)部分是0的讀作“零”),小數(shù)點讀作“點”,小數(shù)部分通常順次讀出每一個數(shù)位上的數(shù)字。例:6.5讀作六點五;0.04讀作零點零四。

      ⑵ 小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫(整數(shù)部分是零的寫作“0”),小數(shù)點寫在個位的右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。例:四點三九寫作:4.39;三十點零一五寫作:30.015。

      3、小數(shù)的分類 ⑴ 按整數(shù)部分情況分:純小數(shù)、帶小數(shù); ⑵ 按小數(shù)部分情況分:有限小數(shù)、無限小數(shù); 無限小數(shù)分為:循環(huán)小數(shù)和不循環(huán)小數(shù)。 循環(huán)小數(shù):例2.3333……寫成2.3(選學(xué)) 4、小數(shù)大小的比較:比較兩個小數(shù)的大小,先看它們的整數(shù)部分,整數(shù)部分大的那個數(shù)大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大…… 5、小數(shù)的性質(zhì):小數(shù)的末尾添上“0”或者去掉“0”,小數(shù)的大小不變。

      6、小數(shù)與分?jǐn)?shù)的相互改寫。 7、小數(shù)點位置的移動引起小數(shù)大小的變化。

      8、四則運算的意義和法則。(同整數(shù)) 9、運算定律和性質(zhì)。

      (整數(shù)運算定律和性質(zhì)對小數(shù)同樣適用) 10、四則混合運算。(同整數(shù)四則混合運算) (三)分?jǐn)?shù) 1、分?jǐn)?shù)的意義:把單位“1”平均分成若干份,表示這樣一份或幾份的數(shù)叫做分?jǐn)?shù)。

      2、百分?jǐn)?shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分?jǐn)?shù)。百分?jǐn)?shù)也叫做百分率或百分比。

      3、分?jǐn)?shù)與除法的關(guān)系:被除數(shù)相當(dāng)于分?jǐn)?shù)。

      4. 關(guān)于數(shù)字的常識

      中國古典四大名著:《三國演義》、《水滸傳》、《紅樓夢》、《西游記》五大奇書——《三國演義》、《水滸傳》、《西游記》、《金瓶梅》、《石頭記》(即〈紅樓夢〉) 古都并稱演變 * 早期有 四大古都 的說法,四大古都指 西安 、洛陽 、南京 、北京 。

      * 二十世紀(jì)三十年代起, 開封 和西安、洛陽、南京、北京一起并稱為 五大古都 。 * 二十世紀(jì)四十年代起, 杭州 和西安、洛陽、南京、北京、開封一起并稱為 六大古都 。

      * 二十世紀(jì)八十年代起, 安陽 和西安、洛陽、南京、北京、開封、杭州一起并稱為 七大古都 。 附:三 易——《連山》、《歸藏》、《周易》 三 禮——《周禮》、《易禮》、《禮記》 三公奇案——《包公案》、《施公案》、《鹿洲公案》 四 書——《大學(xué)》、《中庸》、《論語》、《孟子》 四 夢——《南柯》、《還魂記》(又名〈牡丹亭〉)、《紫釵記》、《邯鄲記》 四 大 千——《太平御覽》、《冊府元龜》、《文苑英華》、《全唐文》 五 經(jīng)——《詩》、《書》、《禮》、《易》、《春秋》 六 藝——禮、樂、射、御、書、數(shù)六種學(xué)問和技能。

      另有一種說法:《詩》、《書》、《禮》、《樂》、《易》、《春秋》六種經(jīng)書為六藝 十 通——《通典》、《通志》、《文獻通考》、《續(xù)通典》、《續(xù)通志》、《續(xù)文獻通志》、《清通典》、《續(xù)清文獻通考》 十才子書——《三國演義》、《好逑傳》、《玉嬌梨》、《平山冷燕》、《水滸傳》、《西廂記》、《琵琶記》、《白圭志》、《斬鬼傳》、《駐春園小史》 二十四史——前四史:《史記》、《后漢書》、《漢書》、《三國志》 二十史:《晉書》、《宋書》、《南齊書》、《梁書》、《隋書》、《陳書》、《后魏書》、《北齊書》、《周書》、《南史》、《北史》、《新唐書》、《新五代史》、《宋史》、《遼史》、《金史》、《元史》、《明史》、《舊唐書》、《永樂大典》中的《舊書代史》。

      5. 數(shù)學(xué)常識

      缺8數(shù)

      人們把12345679叫做“缺8數(shù)”,這“缺8數(shù)”有許多讓人驚訝的特點,比如用9的倍數(shù)與它相乘,乘積竟會是由同一個數(shù)組成,人們把這叫做“清一色”。比如:

      12345679*9=111111111

      12345679*18=222222222

      12345679*27=333333333

      ……

      12345679*81=999999999

      這些都是9的1倍至9的9倍的。

      還有99、108、117至171。最后,得出的答案是:

      12345679*99=1222222221

      12345679*108=1333333332

      12345679*117=1444444443

      … …

      12345679*171=2111111109

      回文數(shù)

      中文里,有回文詩句、對聯(lián),如:"靈山大佛,佛大山靈","客上天然居,居然天上客"等等,都是美妙的符合正念倒念都一樣的回文句.

      回文數(shù)則是有類似22、383、5445、12321,不論是從左向右順讀,還是從右向左倒讀,結(jié)果都是一樣的特征.許多數(shù)學(xué)家著迷于此。

      回文數(shù)中存在無窮多個素數(shù)11,101,131,151,191……。除了11以外,所有回文素數(shù)的位數(shù)都是奇數(shù)。道理很簡單:如果一個回文素數(shù)的位數(shù)是偶數(shù),則它的奇數(shù)位上的數(shù)字和與偶數(shù)位上的數(shù)字和必然相等;根據(jù)數(shù)的整除性理論,容易判斷這樣的數(shù)肯定能被11整除,所以它就不可能是素數(shù)。

      人們借助電子計算機發(fā)現(xiàn),在完全平方數(shù)、完全立方數(shù)中的回文數(shù),其比例要比一般自然數(shù)中回文數(shù)所占的比例大得多。例如112=121,222=484,73=343,113=1331……都是回文數(shù)。

      人們迄今未能找到四次方、五次方,以及更高次冪的回文素數(shù)。于是數(shù)學(xué)家們猜想:不存在nk(k≥4;n、k均是自然數(shù))形式的回文數(shù)。

      在電子計算器的實踐中,還發(fā)現(xiàn)了一樁趣事:任何一個自然數(shù)與它的倒序數(shù)相加,所得的和再與和的倒序數(shù)相加,……如此反復(fù)進行下去,經(jīng)過有限次步驟后,最后必定能得到一個回文數(shù)。

      6. 小學(xué)數(shù)學(xué)知識集錦

      小學(xué)數(shù)學(xué)復(fù)習(xí)考試知識點匯總一、小學(xué)生數(shù)學(xué)法則知識歸類(一)筆算兩位數(shù)加法,要記三條1、相同數(shù)位對齊;2、從個位加起;3、個位滿10向十位進1。

      (二)筆算兩位數(shù)減法,要記三條1、相同數(shù)位對齊;2、從個位減起;3、個位不夠減從十位退1,在個位加10再減。(三)混合運算計算法則1、在沒有括號的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;2、在沒有括號的算式里,有乘除法和加減法的,要先算乘除再算加減;3、算式里有括號的要先算括號里面的。

      (四)四位數(shù)的讀法1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;2、中間有一個0或兩個0只讀一個“零”;3、末位不管有幾個0都不讀。(五)四位數(shù)寫法1、從高位起,按照順序?qū)懀?、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫“0”。

      (六)四位數(shù)減法也要注意三條1、相同數(shù)位對齊;2、從個位減起;3、哪一位數(shù)不夠減,從前位退1,在本位加10再減。(七)一位數(shù)乘多位數(shù)乘法法則1、從個位起,用一位數(shù)依次乘多位數(shù)中的每一位數(shù);2、哪一位上乘得的積滿幾十就向前進幾。

      (八)除數(shù)是一位數(shù)的除法法則1、從被除數(shù)高位除起,每次用除數(shù)先試除被除數(shù)的前一位數(shù),如果它比除數(shù)小再試除前兩位數(shù);2、除數(shù)除到哪一位,就把商寫在那一位上面;3、每求出一位商,余下的數(shù)必須比除數(shù)小。(九)一個因數(shù)是兩位數(shù)的乘法法則1、先用兩位數(shù)個位上的數(shù)去乘另一個因數(shù),得數(shù)的末位和兩位數(shù)個位對齊;2、再用兩位數(shù)的十位上的數(shù)去乘另一個因數(shù),得數(shù)的末位和兩位數(shù)十位對齊;3、然后把兩次乘得的數(shù)加起來。

      (十)除數(shù)是兩位數(shù)的除法法則1、從被除數(shù)高位起,先用除數(shù)試除被除數(shù)前兩位,如果它比除數(shù)小,2、除到被除數(shù)的哪一位就在哪一位上面寫商;3、每求出一位商,余下的數(shù)必須比除數(shù)小。(十一)萬級數(shù)的讀法法則1、先讀萬級,再讀個級;2、萬級的數(shù)要按個級的讀法來讀,再在后面加上一個“萬”字;3、每級末位不管有幾個0都不讀,其它數(shù)位有一個0或連續(xù)幾個零都只讀一個“零”。

      (十二)多位數(shù)的讀法法則1、從高位起,一級一級往下讀;2、讀億級或萬級時,要按照個級數(shù)的讀法來讀,再往后面加上“億”或“萬”字;3、每級末尾的0都不讀,其它數(shù)位有一個0或連續(xù)幾個0都只讀一個零。(十三)小數(shù)大小的比較比較兩個小數(shù)的大小,先看它們整數(shù)部分,整數(shù)部分大的那個數(shù)就大,整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大,十分位數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大,依次類推。

      (十四)小數(shù)加減法計算法則計算小數(shù)加減法,先把小數(shù)點對齊(也就是把相同的數(shù)位上的數(shù)對齊),再按照整數(shù)加減法則進行計算,最后在得數(shù)里對齊橫線上的小數(shù)點位置,點上小數(shù)點。(十五)小數(shù)乘法的計算法則計算小數(shù)乘法,先按照乘法的法則算出積,再看因數(shù)中一共幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點。

      (十六)除數(shù)是整數(shù)除法的法則除數(shù)是整數(shù)的小數(shù)除法,按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)小數(shù)點對齊,如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0再繼續(xù)除。(十七)除數(shù)是小數(shù)的除法運算法則除數(shù)是小數(shù)的除法,先移動除數(shù)小數(shù)點,使它變成整數(shù);除數(shù)的小數(shù)點向右移幾位,被除數(shù)小數(shù)點也向右移幾位(位數(shù)不夠在被除數(shù)末尾用0補足)然后按照除數(shù)是整數(shù)的小數(shù)除法進行計算。

      (十八)解答應(yīng)用題步驟1、弄清題意,并找出已知條件和所求問題,分析題里的數(shù)量關(guān)系,確定先算什么,再算什么,最后算什么; 2、確定每一步該怎樣算,列出算式,算出得數(shù);3、進行檢驗,寫出答案。(十九)列方程解應(yīng)用題的一般步驟1、弄清題意,找出未知數(shù),并用X表示;2、找出應(yīng)用題中數(shù)量之間的相等關(guān)系,列方程;3、解方程;4、檢驗、寫出答案。

      (二十)同分母分?jǐn)?shù)加減的法則同分母分?jǐn)?shù)相加減,分母不變,只把分子相加減。(二十一)同分母帶分?jǐn)?shù)加減的法則帶分?jǐn)?shù)相加減,先把整數(shù)部分和分?jǐn)?shù)部分分別相加減,再把所得的數(shù)合并起來。

      (二十二)異分母分?jǐn)?shù)加減的法則異分母分?jǐn)?shù)相加減,先通分,然后按照同分母分?jǐn)?shù)加減的法則進行計算。(二十三)分?jǐn)?shù)乘以整數(shù)的計算法則分?jǐn)?shù)乘以整數(shù),用分?jǐn)?shù)的分子和整數(shù)相乘的積作分子,分母不變。

      (二十四)分?jǐn)?shù)乘以分?jǐn)?shù)的計算法則分?jǐn)?shù)乘以分?jǐn)?shù),用分子相乘的積作分子,分母相乘的積作分母。(二十五)一個數(shù)除以分?jǐn)?shù)的計算法則一個數(shù)除以分?jǐn)?shù),等于這個數(shù)乘以除數(shù)的倒數(shù)。

      (二十六)把小數(shù)化成百分?jǐn)?shù)和把百分?jǐn)?shù)化成小數(shù)的方法把小數(shù)化成百分?jǐn)?shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號;把百分?jǐn)?shù)化成小數(shù),把百分號去掉,同時小數(shù)點向左移動兩位。(二十七)把分?jǐn)?shù)化成百分?jǐn)?shù)和把百分?jǐn)?shù)化成分?jǐn)?shù)的方法把分?jǐn)?shù)化成百分?jǐn)?shù),通常先把分?jǐn)?shù)化成小數(shù)(除不盡通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù);把百分?jǐn)?shù)化成小數(shù),先把百分?jǐn)?shù)改寫成分母是100的分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。

      二、小學(xué)數(shù)學(xué)口決定義歸類1、什么是圖形的周長?圍成一個圖形所。

      7. 生活中有哪些數(shù)學(xué)小常識啊

      這是一個有趣的數(shù)學(xué)常識,做數(shù)學(xué)報用上它也很不錯。

      人們把12345679叫做“缺8數(shù)”,這“缺8數(shù)”有許多讓人驚訝的特點,比如用9的倍數(shù)與它相乘,乘積竟會是由同一個數(shù)組成,人們把這叫做“清一色”。比如:

      12345679*9=111111111

      12345679*18=222222222

      12345679*27=333333333

      ……

      12345679*81=999999999

      這些都是9的1倍至9的9倍的。

      還有99、108、117至171。最后,得出的答案是:

      12345679*99=1222222221

      12345679*108=1333333332

      12345679*117=1444444443

      … …

      12345679*171=2111111109

      也是“清一色

      8. 六年級數(shù)學(xué)中數(shù)的知識整理

      第一章 數(shù)和數(shù)的運算 一 概念 (一)整數(shù) 1 整數(shù)的意義 自然數(shù)和0都是整數(shù)。

      2 自然數(shù) 我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。 一個物體也沒有,用0表示。

      0也是自然數(shù)。 3計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。

      每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。

      4 數(shù)位 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 5數(shù)的整除 整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。

      如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。

      因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。

      例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。

      3的倍數(shù)有:3、6、9、12……其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。 個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。

      個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。

      一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。

      一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。

      一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

      一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

      能被2整除的數(shù)叫做偶數(shù)。 不能被2整除的數(shù)叫做奇數(shù)。

      0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。

      一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。

      1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。

      每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3*5,3和5 叫做15的質(zhì)因數(shù)。

      把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。 例如把28分解質(zhì)因數(shù) 幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。

      其中最大的一個,叫做這幾個數(shù)的最大公約數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數(shù),6是它們的最大公約數(shù)。

      公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況: 1和任何自然數(shù)互質(zhì)。 相鄰的兩個自然數(shù)互質(zhì)。

      兩個不同的質(zhì)數(shù)互質(zhì)。 當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。

      兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。 如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。

      如果兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6 、8、10、12、14、16、18 …… 3的倍數(shù)有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數(shù),6是它們的最小公倍數(shù)。

      如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。

      如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。 幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。

      (二)小數(shù) 1 小數(shù)的意義 把整數(shù)1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數(shù)表示。 一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾…… 一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。

      數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。

      小數(shù)部分的最高分?jǐn)?shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。 2小數(shù)的分類 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。

      例如: 0.25 、0.368 都是純小數(shù)。 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。

      例如: 3.25 、5.26 都是帶小數(shù)。 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。

      例如: 41.7 、25.3 、0.23 都是有限小數(shù)。 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。

      例如: 4.33 …… 3.1415926 …… 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無。

      聲明:沿途百知所有(內(nèi)容)均由用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流。若您的權(quán)利被侵害,請聯(lián)系我們將盡快刪除