绝对不卡福利网站|中文字幕在笑第一页|午夜福利中文字幕首页|久久精彩视频免费观看

  • <abbr id="lczsv"></abbr>
    <blockquote id="lczsv"></blockquote>

    <track id="lczsv"><table id="lczsv"><nobr id="lczsv"></nobr></table></track>
    • igbt使用中的幾個(gè)常識性問題

      2021-08-04 綜合 86閱讀 投稿:離不開

      1.IGBT開關(guān)的基礎(chǔ)知識

      IGBT IGBT(Insulated Gate Bipolar Transistor),絕緣柵極型功率管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應(yīng)管)組成的復(fù)合全控型電壓驅(qū)動(dòng)式電力電子器件。

      應(yīng)用于交流電機(jī)、變頻器、開關(guān)電源、照明電路、牽引傳動(dòng)等領(lǐng)域。IGBT是強(qiáng)電流、高壓應(yīng)用和快速終端設(shè)備用垂直功率MOSFET的自然進(jìn)化。

      由于實(shí)現(xiàn)一個(gè)較高的擊穿電壓BVDSS需要一個(gè)源漏通道,而這個(gè)通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點(diǎn)。雖然最新一代功率MOSFET器件大幅度改進(jìn)了RDS(on)特性,但是在高電平時(shí),功率導(dǎo)通損耗仍然要比IGBT 技術(shù)高出很多。

      較低的壓降,轉(zhuǎn)換成一個(gè)低VCE(sat)的能力,以及IGBT的結(jié)構(gòu),同一個(gè)標(biāo)準(zhǔn)雙極器件相比,可支持更高電流密度,并簡化IGBT驅(qū)動(dòng)器的原理圖。IGBT基本結(jié)構(gòu)見圖1中的縱剖面圖及等效電路。

      導(dǎo)通 IGBT硅片的結(jié)構(gòu)與功率MOSFET 的結(jié)構(gòu)十分相似,主要差異是IGBT增加了P+ 基片和一個(gè)N+ 緩沖層(NPT-非穿通-IGBT技術(shù)沒有增加這個(gè)部分)。如等效電路圖所示(圖1),其中一個(gè)MOSFET驅(qū)動(dòng)兩個(gè)雙極器件。

      基片的應(yīng)用在管體的P+和N+ 區(qū)之間創(chuàng)建了一個(gè)J1結(jié)。 當(dāng)正柵偏壓使柵極下面反演P基區(qū)時(shí),一個(gè)N溝道形成,同時(shí)出現(xiàn)一個(gè)電子流,并完全按照功率MOSFET的方式產(chǎn)生一股電流。

      如果這個(gè)電子流產(chǎn)生的電壓在0.7V范圍內(nèi),那么,J1將處于正向偏壓,一些空穴注入N-區(qū)內(nèi),并調(diào)整陰陽極之間的電阻率,這種方式降低了功率導(dǎo)通的總損耗,并啟動(dòng)了第二個(gè)電荷流。最后的結(jié)果是,在半導(dǎo)體層次內(nèi)臨時(shí)出現(xiàn)兩種不同的電流拓?fù)洌阂粋€(gè)電子流(MOSFET 電流); 空穴電流(雙極)。

      關(guān)斷 當(dāng)在柵極施加一個(gè)負(fù)偏壓或柵壓低于門限值時(shí),溝道被禁止,沒有空穴注入N-區(qū)內(nèi)。在任何情況下,如果MOSFET電流在開關(guān)階段迅速下降,集電極電流則逐漸降低,這是因?yàn)閾Q向開始后,在N層內(nèi)還存在少數(shù)的載流子(少子)。

      這種殘余電流值(尾流)的降低,完全取決于關(guān)斷時(shí)電荷的密度,而密度又與幾種因素有關(guān),如摻雜質(zhì)的數(shù)量和拓?fù)?,層次厚度和溫度。少子的衰減使集電極電流具有特征尾流波形,集電極電流引起以下問題:功耗升高;交叉導(dǎo)通問題,特別是在使用續(xù)流二極管的設(shè)備上,問題更加明顯。

      鑒于尾流與少子的重組有關(guān),尾流的電流值應(yīng)與芯片的溫度、IC 和VCE密切相關(guān)的空穴移動(dòng)性有密切的關(guān)系。因此,根據(jù)所達(dá)到的溫度,降低這種作用在終端設(shè)備設(shè)計(jì)上的電流的不理想效應(yīng)是可行的,尾流特性與VCE、IC和 TC之間的關(guān)系如圖2所示。

      反向阻斷 當(dāng)集電極被施加一個(gè)反向電壓時(shí), J1 就會(huì)受到反向偏壓控制,耗盡層則會(huì)向N-區(qū)擴(kuò)展。因過多地降低這個(gè)層面的厚度,將無法取得一個(gè)有效的阻斷能力,所以,這個(gè)機(jī)制十分重要。

      另一方面,如果過大地增加這個(gè)區(qū)域尺寸,就會(huì)連續(xù)地提高壓降。 第二點(diǎn)清楚地說明了NPT器件的壓降比等效(IC 和速度相同) PT 器件的壓降高的原因。

      正向阻斷 當(dāng)柵極和發(fā)射極短接并在集電極端子施加一個(gè)正電壓時(shí),P/N J3結(jié)受反向電壓控制。此時(shí),仍然是由N漂移區(qū)中的耗盡層承受外部施加的電壓。

      閂鎖 IGBT在集電極與發(fā)射極之間有一個(gè)寄生PNPN晶閘管,如圖1所示。在特殊條件下,這種寄生器件會(huì)導(dǎo)通。

      這種現(xiàn)象會(huì)使集電極與發(fā)射極之間的電流量增加,對等效MOSFET的控制能力降低,通常還會(huì)引起器件擊穿問題。晶閘管導(dǎo)通現(xiàn)象被稱為IGBT閂鎖,具體地說,這種缺陷的原因互不相同,與器件的狀態(tài)有密切關(guān)系。

      通常情況下,靜態(tài)和動(dòng)態(tài)閂鎖有如下主要區(qū)別: 當(dāng)晶閘管全部導(dǎo)通時(shí),靜態(tài)閂鎖出現(xiàn)。 只在關(guān)斷時(shí)才會(huì)出現(xiàn)動(dòng)態(tài)閂鎖。

      這一特殊現(xiàn)象嚴(yán)重地限制了安全操作區(qū) 。 為防止寄生NPN和PNP晶體管的有害現(xiàn)象,有必要采取以下措施: 防止NPN部分接通,分別改變布局和摻雜級別。

      降低NPN和PNP晶體管的總電流增益。 此外,閂鎖電流對PNP和NPN器件的電流增益有一定的影響,因此,它與結(jié)溫的關(guān)系也非常密切;在結(jié)溫和增益提高的情況下,P基區(qū)的電阻率會(huì)升高,破壞了整體特性。

      因此,器件制造商必須注意將集電極最大電流值與閂鎖電流之間保持一定的比例,通常比例為1:5。 正向?qū)ㄌ匦?在通態(tài)中,IGBT可以按照“第一近似”和功率MOSFET驅(qū)動(dòng)的PNP晶體管建模。

      圖3所示是理解器件在工作時(shí)的物理特性所需的結(jié)構(gòu)元件(寄生元件不考慮在內(nèi))。 如圖所示,IC是VCE的一個(gè)函數(shù)(靜態(tài)特性),假如陰極和陽極之間的壓降不超過0.7V,即使柵信號讓MOSFET溝道形成(如圖所示),集電極電流IC也無法流通。

      當(dāng)溝道上的電壓大于VGE -Vth 時(shí),電流處于飽和狀態(tài),輸出電阻無限大。由于IGBT結(jié)構(gòu)中含有一個(gè)雙極MOSFET和一個(gè)功率MOSFET,因此,它的溫度特性取決于在屬性上具有對比性的兩個(gè)器件的凈效率。

      功率MOSFET的溫度系數(shù)是正的,而雙極的溫度系數(shù)則是負(fù)的。本圖描述了VCE(sat) 作為一個(gè)集電極電流的函數(shù)在不同結(jié)溫時(shí)的變化情況。

      當(dāng)必須并聯(lián)兩個(gè)以上的設(shè)備時(shí),這個(gè)問題變得十分重要,而且只能按照對應(yīng)某一電流率的VCE(sat)選擇一個(gè)并聯(lián)設(shè)備來解決問題。有時(shí)候,用一個(gè)。

      2.電路常識性概念有哪些

      .TTL

      TTL集成電路的主要型式為晶體管-晶體管邏輯門(transistor-transistor logic gate),TTL大部分都采用5V電源。

      1.輸出高電平Uoh和輸出低電平Uol

      Uoh≥2.4V,Uol≤0.4V

      2.輸入高電平和輸入低電平

      Uih≥2.0V,Uil≤0.8V

      二.CMOS

      CMOS電路是電壓控制器件,輸入電阻極大,對于干擾信號十分敏感,因此不用的輸入端不應(yīng)開路,接到地或者電源上。CMOS電路的優(yōu)點(diǎn)是噪聲容限較寬,靜態(tài)功耗很小。

      1.輸出高電平Uoh和輸出低電平Uol

      Uoh≈VCC,Uol≈GND

      2.輸入高電平Uoh和輸入低電平Uol

      Uih≥0.7VCC,Uil≤0.2VCC (VCC為電源電壓,GND為地)

      從上面可以看出:

      在同樣5V電源電壓情況下,COMS電路可以直接驅(qū)動(dòng)TTL,因?yàn)镃MOS的輸出高電平大于2.0V,輸出低電平小于0.8V;而TTL電路則不能直接驅(qū)動(dòng)CMOS電路,TTL的輸出高電平為大于2.4V,如果落在2.4V~3.5V之間,則CMOS電路就不能檢測到高電平,低電平小于0.4V滿足要求,所以在TTL電路驅(qū)動(dòng)COMS電路時(shí)需要加上拉電阻。如果出現(xiàn)不同電壓電源的情況,也可以通過上面的方法進(jìn)行判斷。

      3.IGBT是怎么個(gè)意思

      IGBT IGBT(Insulated Gate Bipolar Transistor),絕緣柵極型功率管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應(yīng)管)組成的復(fù)合全控型電壓驅(qū)動(dòng)式電力電子器件。

      應(yīng)用于交流電機(jī)、變頻器、開關(guān)電源、照明電路、牽引傳動(dòng)等領(lǐng)域。 IGBT是強(qiáng)電流、高壓應(yīng)用和快速終端設(shè)備用垂直功率MOSFET的自然進(jìn)化。

      由于實(shí)現(xiàn)一個(gè)較高的擊穿電壓BVDSS需要一個(gè)源漏通道,而這個(gè)通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點(diǎn)。雖然最新一代功率MOSFET器件大幅度改進(jìn)了RDS(on)特性,但是在高電平時(shí),功率導(dǎo)通損耗仍然要比IGBT 技術(shù)高出很多。

      較低的壓降,轉(zhuǎn)換成一個(gè)低VCE(sat)的能力,以及IGBT的結(jié)構(gòu),同一個(gè)標(biāo)準(zhǔn)雙極器件相比,可支持更高電流密度,并簡化IGBT驅(qū)動(dòng)器的原理圖。 導(dǎo)通 IGBT硅片的結(jié)構(gòu)與功率MOSFET 的結(jié)構(gòu)十分相似,主要差異是IGBT增加了P+ 基片和一個(gè)N+ 緩沖層(NPT-非穿通-IGBT技術(shù)沒有增加這個(gè)部分)。

      如等效電路圖所示(圖1),其中一個(gè)MOSFET驅(qū)動(dòng)兩個(gè)雙極器件?;膽?yīng)用在管體的P+和N+ 區(qū)之間創(chuàng)建了一個(gè)J1結(jié)。

      當(dāng)正柵偏壓使柵極下面反演P基區(qū)時(shí),一個(gè)N溝道形成,同時(shí)出現(xiàn)一個(gè)電子流,并完全按照功率MOSFET的方式產(chǎn)生一股電流。如果這個(gè)電子流產(chǎn)生的電壓在0.7V范圍內(nèi),那么,J1將處于正向偏壓,一些空穴注入N-區(qū)內(nèi),并調(diào)整陰陽極之間的電阻率,這種方式降低了功率導(dǎo)通的總損耗,并啟動(dòng)了第二個(gè)電荷流。

      最后的結(jié)果是,在半導(dǎo)體層次內(nèi)臨時(shí)出現(xiàn)兩種不同的電流拓?fù)洌阂粋€(gè)電子流(MOSFET 電流); 空穴電流(雙極)。 關(guān)斷 當(dāng)在柵極施加一個(gè)負(fù)偏壓或柵壓低于門限值時(shí),溝道被禁止,沒有空穴注入N-區(qū)內(nèi)。

      在任何情況下,如果MOSFET電流在開關(guān)階段迅速下降,集電極電流則逐漸降低,這是因?yàn)閾Q向開始后,在N層內(nèi)還存在少數(shù)的載流子(少子)。這種殘余電流值(尾流)的降低,完全取決于關(guān)斷時(shí)電荷的密度,而密度又與幾種因素有關(guān),如摻雜質(zhì)的數(shù)量和拓?fù)?,層次厚度和溫度?/p>

      少子的衰減使集電極電流具有特征尾流波形,集電極電流引起以下問題:功耗升高;交叉導(dǎo)通問題,特別是在使用續(xù)流二極管的設(shè)備上,問題更加明顯。 鑒于尾流與少子的重組有關(guān),尾流的電流值應(yīng)與芯片的溫度、IC 和VCE密切相關(guān)的空穴移動(dòng)性有密切的關(guān)系。

      因此,根據(jù)所達(dá)到的溫度,降低這種作用在終端設(shè)備設(shè)計(jì)上的電流的不理想效應(yīng)是可行的,尾流特性與VCE、IC和 TC之間的關(guān)系如圖2所示。 反向阻斷 當(dāng)集電極被施加一個(gè)反向電壓時(shí), J1 就會(huì)受到反向偏壓控制,耗盡層則會(huì)向N-區(qū)擴(kuò)展。

      因過多地降低這個(gè)層面的厚度,將無法取得一個(gè)有效的阻斷能力,所以,這個(gè)機(jī)制十分重要。另一方面,如果過大地增加這個(gè)區(qū)域尺寸,就會(huì)連續(xù)地提高壓降。

      第二點(diǎn)清楚地說明了NPT器件的壓降比等效(IC 和速度相同) PT 器件的壓降高的原因。 正向阻斷 當(dāng)柵極和發(fā)射極短接并在集電極端子施加一個(gè)正電壓時(shí),P/N J3結(jié)受反向電壓控制。

      此時(shí),仍然是由N漂移區(qū)中的耗盡層承受外部施加的電壓。 閂鎖 IGBT在集電極與發(fā)射極之間有一個(gè)寄生PNPN晶閘管,如圖1所示。

      在特殊條件下,這種寄生器件會(huì)導(dǎo)通。這種現(xiàn)象會(huì)使集電極與發(fā)射極之間的電流量增加,對等效MOSFET的控制能力降低,通常還會(huì)引起器件擊穿問題。

      晶閘管導(dǎo)通現(xiàn)象被稱為IGBT閂鎖,具體地說,這種缺陷的原因互不相同,與器件的狀態(tài)有密切關(guān)系。通常情況下,靜態(tài)和動(dòng)態(tài)閂鎖有如下主要區(qū)別: 當(dāng)晶閘管全部導(dǎo)通時(shí),靜態(tài)閂鎖出現(xiàn)。

      只在關(guān)斷時(shí)才會(huì)出現(xiàn)動(dòng)態(tài)閂鎖。這一特殊現(xiàn)象嚴(yán)重地限制了安全操作區(qū) 。

      為防止寄生NPN和PNP晶體管的有害現(xiàn)象,有必要采取以下措施: 防止NPN部分接通,分別改變布局和摻雜級別。 降低NPN和PNP晶體管的總電流增益。

      此外,閂鎖電流對PNP和NPN器件的電流增益有一定的影響,因此,它與結(jié)溫的關(guān)系也非常密切;在結(jié)溫和增益提高的情況下,P基區(qū)的電阻率會(huì)升高,破壞了整體特性。因此,器件制造商必須注意將集電極最大電流值與閂鎖電流之間保持一定的比例,通常比例為1:5。

      正向?qū)ㄌ匦?在通態(tài)中,IGBT可以按照“第一近似”和功率MOSFET驅(qū)動(dòng)的PNP晶體管建模。圖3所示是理解器件在工作時(shí)的物理特性所需的結(jié)構(gòu)元件(寄生元件不考慮在內(nèi))。

      如圖所示,IC是VCE的一個(gè)函數(shù)(靜態(tài)特性),假如陰極和陽極之間的壓降不超過0.7V,即使柵信號讓MOSFET溝道形成(如圖所示),集電極電流IC也無法流通。當(dāng)溝道上的電壓大于VGE -Vth 時(shí),電流處于飽和狀態(tài),輸出電阻無限大。

      由于IGBT結(jié)構(gòu)中含有一個(gè)雙極MOSFET和一個(gè)功率MOSFET,因此,它的溫度特性取決于在屬性上具有對比性的兩個(gè)器件的凈效率。功率MOSFET的溫度系數(shù)是正的,而雙極的溫度系數(shù)則是負(fù)的。

      本圖描述了VCE(sat) 作為一個(gè)集電極電流的函數(shù)在不同結(jié)溫時(shí)的變化情況。當(dāng)必須并聯(lián)兩個(gè)以上的設(shè)備時(shí),這個(gè)問題變得十分重要,而且只能按照對應(yīng)某一電流率的VCE(sat)選擇一個(gè)并聯(lián)設(shè)備來解決問題。

      有時(shí)候,用一個(gè)NPT進(jìn)行簡易并聯(lián)的效果是很好的,但是與一個(gè)電平和速度相同的PT器件相比,使用。

      4.電氣元件IGBT工作原理

      IGBT

      IGBT(Insulated Gate Bipolar Transistor),絕緣柵極型功率管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應(yīng)管)組成的復(fù)合全控型電壓驅(qū)動(dòng)式電力電子器件。應(yīng)用于交流電機(jī)、變頻器、開關(guān)電源、照明電路、牽引傳動(dòng)等領(lǐng)域。

      IGBT是強(qiáng)電流、高壓應(yīng)用和快速終端設(shè)備用垂直功率MOSFET的自然進(jìn)化。由于實(shí)現(xiàn)一個(gè)較高的擊穿電壓BVDSS需要一個(gè)源漏通道,而這個(gè)通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點(diǎn)。雖然最新一代功率MOSFET器件大幅度改進(jìn)了RDS(on)特性,但是在高電平時(shí),功率導(dǎo)通損耗仍然要比IGBT 技術(shù)高出很多。較低的壓降,轉(zhuǎn)換成一個(gè)低VCE(sat)的能力,以及IGBT的結(jié)構(gòu),同一個(gè)標(biāo)準(zhǔn)雙極器件相比,可支持更高電流密度,并簡化IGBT驅(qū)動(dòng)器的原理圖。IGBT基本結(jié)構(gòu)見圖1中的縱剖面圖及等效電路。

      導(dǎo)通

      IGBT硅片的結(jié)構(gòu)與功率MOSFET 的結(jié)構(gòu)十分相似,主要差異是IGBT增加了P+ 基片和一個(gè)N+ 緩沖層(NPT-非穿通-IGBT技術(shù)沒有增加這個(gè)部分)。如等效電路圖所示(圖1),其中一個(gè)MOSFET驅(qū)動(dòng)兩個(gè)雙極器件?;膽?yīng)用在管體的P+和N+ 區(qū)之間創(chuàng)建了一個(gè)J1結(jié)。

      當(dāng)正柵偏壓使柵極下面反演P基區(qū)時(shí),一個(gè)N溝道形成,同時(shí)出現(xiàn)一個(gè)電子流,并完全按照功率MOSFET的方式產(chǎn)生一股電流。如果這個(gè)電子流產(chǎn)生的電壓在0.7V范圍內(nèi),那么,J1將處于正向偏壓,一些空穴注入N-區(qū)內(nèi),并調(diào)整陰陽極之間的電阻率,這種方式降低了功率導(dǎo)通的總損耗,并啟動(dòng)了第二個(gè)電荷流。最后的結(jié)果是,在半導(dǎo)體層次內(nèi)臨時(shí)出現(xiàn)兩種不同的電流拓?fù)洌阂粋€(gè)電子流(MOSFET 電流); 空穴電流(雙極)。

      關(guān)斷

      當(dāng)在柵極施加一個(gè)負(fù)偏壓或柵壓低于門限值時(shí),溝道被禁止,沒有空穴注入N-區(qū)內(nèi)。在任何情況下,如果MOSFET電流在開關(guān)階段迅速下降,集電極電流則逐漸降低,這是因?yàn)閾Q向開始后,在N層內(nèi)還存在少數(shù)的載流子(少子)。這種殘余電流值(尾流)的降低,完全取決于關(guān)斷時(shí)電荷的密度,而密度又與幾種因素有關(guān),如摻雜質(zhì)的數(shù)量和拓?fù)?,層次厚度和溫度。少子的衰減使集電極電流具有特征尾流波形,集電極電流引起以下問題:功耗升高;交叉導(dǎo)通問題,特別是在使用續(xù)流二極管的設(shè)備上,問題更加明顯。

      鑒于尾流與少子的重組有關(guān),尾流的電流值應(yīng)與芯片的溫度、IC 和VCE密切相關(guān)的空穴移動(dòng)性有密切的關(guān)系。因此,根據(jù)所達(dá)到的溫度,降低這種作用在終端設(shè)備設(shè)計(jì)上的電流的不理想效應(yīng)是可行的,尾流特性與VCE、IC和 TC之間的關(guān)系如圖2所示。

      反向阻斷

      當(dāng)集電極被施加一個(gè)反向電壓時(shí), J1 就會(huì)受到反向偏壓控制,耗盡層則會(huì)向N-區(qū)擴(kuò)展。因過多地降低這個(gè)層面的厚度,將無法取得一個(gè)有效的阻斷能力,所以,這個(gè)機(jī)制十分重要。另一方面,如果過大地增加這個(gè)區(qū)域尺寸,就會(huì)連續(xù)地提高壓降。

      第二點(diǎn)清楚地說明了NPT器件的壓降比等效(IC 和速度相同) PT 器件的壓降高的原因。

      正向阻斷

      當(dāng)柵極和發(fā)射極短接并在集電極端子施加一個(gè)正電壓時(shí),P/N J3結(jié)受反向電壓控制。此時(shí),仍然是由N漂移區(qū)中的耗盡層承受外部施加的電壓。

      igbt使用中的幾個(gè)常識性問題

      聲明:沿途百知所有(內(nèi)容)均由用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流。若您的權(quán)利被侵害,請聯(lián)系我們將盡快刪除